Mean and STD:
- lat_mean: 39.95177538047139
- lat_std: 0.000688423824245344
- lon_mean: -75.19147811784511
- lon_std: 0.0006632296829719546
Implemented a ResNet50-based model using PyTorch: | import torch import torch.nn as nn from torchvision.models import resnet50
class CustomResNet50(nn.Module): def init(self, num_classes=2): super().init() self.model = resnet50(pretrained=False) num_features = self.model.fc.in_features self.model.fc = nn.Linear(num_features, num_classes)
def forward(self, x):
return self.model(x)
Run the following code to access the model: | from huggingface_hub import hf_hub_download import torch import torch.nn as nn from torchvision.models import resnet50
repo_id = "ImageGPSProj/ResNet50Model" filename = "custom_resnet50.pth" model_path = hf_hub_download(repo_id=repo_id, filename=filename)
Re-instantiate the architecture
loaded_model = resnet50(pretrained=False) num_features = loaded_model.fc.in_features loaded_model.fc = nn.Linear(num_features, 2)
Load the state_dict
state_dict = torch.load(model_path, map_location=torch.device('cpu')) loaded_model.load_state_dict(state_dict)
loaded_model.eval()
dataset_info: features: - name: image dtype: image - name: Latitude dtype: float64 - name: Longitude dtype: float64 splits: - name: train num_bytes: 6747451504 num_examples: 825 - name: test num_bytes: 928890377 num_examples: 105 - name: val num_bytes: 791887265 num_examples: 102 download_size: 7405818019 dataset_size: 8468229146 configs:
- config_name: default
data_files:
- split: train path: data/train-*
- split: test path: data/test-*
- split: val path: data/val-*