license: apache-2.0
base_model:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
library_name: transformers
tags:
- mergekit
- merge
- code
model-index:
- name: Magic-Dolphin-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.78
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.61
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 58.01
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
Magic-Dolphin-7b
The follow-up to this model has been released, check out the updated benchmarks here for Excalibur-7b
A full suite of GGUF quantizations can be found here, courtesy of RichardErkhov
A linear merge of:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
These three models showed excellent acumen in technical topics so I wanted to see how they would behave together in a merge. Several different ratios were tested before this release, in the end a higher weighting for merlinite-7b helped smooth out some edges. This model is a test of how LAB tuning is impacted by merges with models leveraging DPO.
Benchmark Performance
Name | Avg. | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
Magic-Dolphin-7b | 67.48 | 65.78 | 85.61 | 64.64 | 58.01 | 79.64 | 51.18 |
dolphin-2.6-mistral-7b-dpo-laser | 67.28 | 66.3 | 85.73 | 63.16 | 61.71 | 79.16 | 47.61 |
merlinite-7b | 64 | 63.65 | 84.52 | 64.91 | 50.15 | 79.72 | 41.09 |
Hyperion-1.5-Mistral-7B | 61.43 | 60.49 | 83.64 | 63.57 | 41.78 | 78.61 | 40.49 |
This was my first experiment with merging models so any feedback is greatly appreciated.
Uses Alpaca template.
Sample Question
Merge Details
Merge Method
This model was merged using the linear merge method.
Models Merged
The following models were included in the merge:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
Configuration
The following YAML configuration was used to produce this model:
models:
- model: models/dolphin-2.6-mistral-7b-dpo-laser
parameters:
weight: 1.0
- model: models/Hyperion-1.5-Mistral-7B
parameters:
weight: 0.3
- model: models/merlinite-7b
parameters:
weight: 0.5
merge_method: linear
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.48 |
AI2 Reasoning Challenge (25-Shot) | 65.78 |
HellaSwag (10-Shot) | 85.61 |
MMLU (5-Shot) | 64.64 |
TruthfulQA (0-shot) | 58.01 |
Winogrande (5-shot) | 79.64 |
GSM8k (5-shot) | 51.18 |