InnerILLM-7B-slerp

InnerILLM-7B-slerp is a merge of the following models using LazyMergekit:

Average model loss 0.8070214592665433

I used this testing script that loads your local model, pulls the latest data from cortex and calculates the loss: avg loss script

🧩 Configuration

slices:
  - sources:
      - model: OpenPipe/mistral-ft-optimized-1218
        layer_range: [0, 32]
      - model: mlabonne/NeuralHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "InnerI/InnerILLM-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.09
AI2 Reasoning Challenge (25-Shot) 67.58
HellaSwag (10-Shot) 86.19
MMLU (5-Shot) 64.15
TruthfulQA (0-shot) 59.84
Winogrande (5-shot) 80.11
GSM8k (5-shot) 68.69
Downloads last month
21
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for InnerI/InnerILLM-7B-slerp

Collection including InnerI/InnerILLM-7B-slerp

Evaluation results