|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Felladrin/Minueza-32M-Chat |
|
--- |
|
|
|
# Mixnueza-6x32M-MoE |
|
|
|
Mixnueza-6x32M-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
* [Felladrin/Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat) |
|
|
|
## 🧩 Configuration |
|
|
|
```yamlbase_model: Felladrin/Minueza-32M-Chat |
|
experts: |
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "reasoning" |
|
- "logic" |
|
- "problem-solving" |
|
- "critical thinking" |
|
- "analysis" |
|
- "synthesis" |
|
- "evaluation" |
|
- "decision-making" |
|
- "judgment" |
|
- "insight" |
|
negative_prompts: |
|
- "programming" |
|
- "storytelling" |
|
- "legal" |
|
- "finance" |
|
|
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "program" |
|
- "software" |
|
- "develop" |
|
- "build" |
|
- "create" |
|
- "design" |
|
- "implement" |
|
- "debug" |
|
- "test" |
|
- "code" |
|
- "python" |
|
- "programming" |
|
- "function" |
|
negative_prompts: |
|
- "reasoning" |
|
- "storytelling" |
|
- "legal" |
|
- "finance" |
|
|
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "storytelling" |
|
- "narrative" |
|
- "fiction" |
|
- "creative writing" |
|
- "plot" |
|
- "characters" |
|
- "dialogue" |
|
- "setting" |
|
- "emotion" |
|
- "imagination" |
|
- "scene" |
|
- "story" |
|
- "character" |
|
negative_prompts: |
|
- "reasoning" |
|
- "programming" |
|
- "legal" |
|
- "finance" |
|
|
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "chat" |
|
- "conversation" |
|
- "dialogue" |
|
- "discuss" |
|
- "share thoughts" |
|
- "explore ideas" |
|
- "personal assistant" |
|
- "friendly helper" |
|
negative_prompts: |
|
- "reasoning" |
|
- "programming" |
|
- "storytelling" |
|
- "legal" |
|
- "finance" |
|
|
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "law" |
|
- "legal" |
|
- "attorney" |
|
- "lawyer" |
|
- "court" |
|
- "contract" |
|
- "criminal" |
|
- "evidence" |
|
- "procedure" |
|
- "contracts" |
|
- "mergers & acquisitions" |
|
- "corporate governance" |
|
- "intellectual property" |
|
- "employment law" |
|
- "international trade" |
|
- "competition law" |
|
- "antitrust" |
|
- "litigation" |
|
- "arbitration" |
|
- "mediation" |
|
negative_prompts: |
|
- "reasoning" |
|
- "programming" |
|
- "storytelling" |
|
- "finance" |
|
|
|
- source_model: Felladrin/Minueza-32M-Chat |
|
positive_prompts: |
|
- "personal finance" |
|
- "budgeting" |
|
- "investing" |
|
- "retirement planning" |
|
- "debt management" |
|
- "financial education" |
|
- "financial" |
|
- "money" |
|
- "investment" |
|
- "banking" |
|
- "stock" |
|
- "bond" |
|
- "portfolio" |
|
- "risk" |
|
- "return" |
|
negative_prompts: |
|
- "reasoning" |
|
- "programming" |
|
- "storytelling" |
|
- "legal" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Isotonic/Mixnueza-6x32M-MoE" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |