JackismyShephard's picture
train with reduced dataset using mcd as metric
1a24b26
|
raw
history blame
3.33 kB
metadata
language:
  - da
license: mit
base_model: microsoft/speecht5_tts
tags:
  - generated_from_trainer
datasets:
  - alexandrainst/nst-da
model-index:
  - name: speecht5_tts-finetuned-nst-da
    results: []

speecht5_tts-finetuned-nst-da

This model is a fine-tuned version of microsoft/speecht5_tts on the NST Danish ASR Database dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3387
  • Mae: 0.1486
  • Mse: 0.0395
  • Mcd: 16.3878
  • Mae Rmcd: 0.1562

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mae Mse Mcd Mae Rmcd
0.4202 1.0 2378 0.3851 0.1589 0.0446 17.5859 0.1674
0.3897 2.0 4756 0.3771 0.1578 0.0440 17.2975 0.1654
0.3749 3.0 7134 0.3636 0.1605 0.0450 17.3449 0.1670
0.359 4.0 9512 0.3632 0.1580 0.0443 17.2756 0.1654
0.3532 5.0 11890 0.3539 0.1592 0.0444 17.1294 0.1653
0.356 6.0 14268 0.3455 0.1536 0.0418 16.9892 0.1617
0.3437 7.0 16646 0.3426 0.1528 0.0416 16.8165 0.1605
0.3434 8.0 19024 0.3438 0.1534 0.0416 16.8859 0.1611
0.3391 9.0 21402 0.3487 0.1558 0.0429 16.7245 0.1615
0.3381 10.0 23780 0.3414 0.1516 0.0409 16.6136 0.1589
0.3455 11.0 26158 0.3395 0.1509 0.0406 16.6252 0.1586
0.3408 12.0 28536 0.3402 0.1504 0.0404 16.7043 0.1587
0.341 13.0 30914 0.3420 0.1527 0.0414 16.6290 0.1595
0.3279 14.0 33292 0.3388 0.1503 0.0404 16.5525 0.1579
0.328 15.0 35670 0.3389 0.1498 0.0401 16.4898 0.1574
0.3264 16.0 38048 0.3391 0.1497 0.0400 16.4882 0.1573
0.3318 17.0 40426 0.3383 0.1498 0.0402 16.5091 0.1575
0.3299 18.0 42804 0.3399 0.1492 0.0399 16.4604 0.1569
0.3304 19.0 45182 0.3399 0.1489 0.0396 16.4132 0.1565
0.3204 20.0 47560 0.3387 0.1486 0.0395 16.3878 0.1562

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2