|
import cv2 |
|
import torch |
|
import numpy as np |
|
import PIL |
|
from PIL import Image |
|
from typing import Tuple, List, Optional |
|
from pydantic import BaseModel |
|
import diffusers |
|
from diffusers.utils import load_image |
|
from diffusers.models import ControlNetModel |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from insightface.app import FaceAnalysis |
|
from style_template import styles |
|
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps |
|
from controlnet_aux import OpenposeDetector |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
import base64 |
|
import io |
|
import json |
|
from transformers import CLIPProcessor, CLIPModel |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "Spring Festival" |
|
|
|
|
|
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors" |
|
if not os.path.exists(lcm_lora_path): |
|
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints") |
|
|
|
class GenerateImageRequest(BaseModel): |
|
inputs: str |
|
negative_prompt: str |
|
style: str |
|
num_steps: int |
|
identitynet_strength_ratio: float |
|
adapter_strength_ratio: float |
|
pose_strength: float |
|
canny_strength: float |
|
depth_strength: float |
|
controlnet_selection: List[str] |
|
guidance_scale: float |
|
seed: int |
|
enable_LCM: bool |
|
enhance_face_region: bool |
|
face_image_base64: str |
|
pose_image_base64: Optional[str] = None |
|
|
|
class EndpointHandler: |
|
def __init__(self, model_dir): |
|
|
|
controlnet_config = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir=os.path.join(model_dir, "checkpoints")) |
|
controlnet_model = hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir=os.path.join(model_dir, "checkpoints")) |
|
face_adapter = hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir=os.path.join(model_dir, "checkpoints")) |
|
|
|
dir_path = os.path.join(model_dir, "models", "face_detection_yunet_2023mar_int8.onnx") |
|
if not os.path.exists(dir_path): |
|
raise RuntimeError(f"Model path {dir_path} does not exist.") |
|
else: |
|
self.face_net = cv2.dnn.readNet(dir_path) |
|
|
|
self.app = FaceAnalysis(name='model', root=model_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
self.app.prepare(ctx_id=0, det_size=(640, 640)) |
|
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") |
|
|
|
|
|
controlnet_path = os.path.join(model_dir, "checkpoints", "ControlNetModel") |
|
|
|
|
|
self.controlnet_identitynet = ControlNetModel.from_pretrained( |
|
controlnet_path, torch_dtype=dtype |
|
) |
|
|
|
|
|
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0" |
|
controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" |
|
|
|
controlnet_pose = ControlNetModel.from_pretrained( |
|
controlnet_pose_model, torch_dtype=dtype |
|
).to(device) |
|
controlnet_canny = ControlNetModel.from_pretrained( |
|
controlnet_canny_model, torch_dtype=dtype |
|
).to(device) |
|
|
|
def get_canny_image(image, t1=100, t2=200): |
|
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) |
|
edges = cv2.Canny(image, t1, t2) |
|
return Image.fromarray(edges, "L") |
|
|
|
self.controlnet_map = { |
|
"pose": controlnet_pose, |
|
"canny": controlnet_canny |
|
} |
|
|
|
self.controlnet_map_fn = { |
|
"pose": openpose, |
|
"canny": get_canny_image |
|
} |
|
|
|
pretrained_model_name_or_path = "wangqixun/YamerMIX_v8" |
|
|
|
self.pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( |
|
pretrained_model_name_or_path, |
|
controlnet=[self.controlnet_identitynet], |
|
torch_dtype=dtype, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
).to(device) |
|
|
|
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( |
|
self.pipe.scheduler.config |
|
) |
|
|
|
|
|
self.pipe.load_lora_weights(lcm_lora_path) |
|
self.pipe.fuse_lora() |
|
self.pipe.disable_lora() |
|
|
|
self.pipe.cuda() |
|
self.pipe.load_ip_adapter_instantid(face_adapter) |
|
self.pipe.image_proj_model.to("cuda") |
|
self.pipe.unet.to("cuda") |
|
|
|
|
|
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device) |
|
|
|
def is_nsfw(self, image: Image.Image) -> bool: |
|
""" |
|
Check if an image contains NSFW content using CLIP model. |
|
|
|
Args: |
|
image (Image.Image): PIL image to check. |
|
|
|
Returns: |
|
bool: True if the image is NSFW, False otherwise. |
|
""" |
|
inputs = self.clip_processor(text=["NSFW", "SFW"], images=image, return_tensors="pt", padding=True) |
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
outputs = self.clip_model(**inputs) |
|
logits_per_image = outputs.logits_per_image |
|
probs = logits_per_image.softmax(dim=1) |
|
nsfw_prob = probs[0, 0].item() |
|
return nsfw_prob > 0.8 |
|
|
|
def detect_faces(self, image: np.ndarray): |
|
""" |
|
Detect faces using Yunet model. |
|
""" |
|
blob = cv2.dnn.blobFromImage(image, scalefactor=1.0, size=(320, 320), mean=(104.0, 177.0, 123.0)) |
|
self.face_net.setInput(blob) |
|
detections = self.face_net.forward() |
|
|
|
h, w = image.shape[:2] |
|
faces = [] |
|
for i in range(detections.shape[2]): |
|
confidence = detections[0, 0, i, 2] |
|
if confidence > 0.5: |
|
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) |
|
(x, y, x1, y1) = box.astype("int") |
|
face = image[y:y1, x:x1] |
|
faces.append((x, y, x1, y1, face)) |
|
return faces |
|
|
|
def __call__(self, data): |
|
|
|
def convert_from_cv2_to_image(img: np.ndarray) -> Image: |
|
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
|
|
def convert_from_image_to_cv2(img: Image) -> np.ndarray: |
|
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
|
|
def resize_img( |
|
input_image, |
|
max_side=1280, |
|
min_side=1024, |
|
size=None, |
|
pad_to_max_side=False, |
|
mode=PIL.Image.BILINEAR, |
|
base_pixel_number=64, |
|
): |
|
w, h = input_image.size |
|
if size is not None: |
|
w_resize_new, h_resize_new = size |
|
else: |
|
ratio = min_side / min(h, w) |
|
w, h = round(ratio * w), round(ratio * h) |
|
ratio = max_side / max(h, w) |
|
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) |
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
if pad_to_max_side: |
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
offset_x = (max_side - w_resize_new) // 2 |
|
offset_y = (max_side - h_resize_new) // 2 |
|
res[ |
|
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new |
|
] = np.array(input_image) |
|
input_image = Image.fromarray(res) |
|
return input_image |
|
|
|
def apply_style( |
|
style_name: str, positive: str, negative: str = "" |
|
) -> Tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive), n + " " + negative |
|
|
|
request = GenerateImageRequest(**data) |
|
inputs = request.inputs |
|
negative_prompt = request.negative_prompt |
|
style_name = request.style |
|
identitynet_strength_ratio = request.identitynet_strength_ratio |
|
adapter_strength_ratio = request.adapter_strength_ratio |
|
pose_strength = request.pose_strength |
|
canny_strength = request.canny_strength |
|
num_steps = request.num_steps |
|
guidance_scale = request.guidance_scale |
|
controlnet_selection = request.controlnet_selection |
|
seed = request.seed |
|
enhance_face_region = request.enhance_face_region |
|
enable_LCM = request.enable_LCM |
|
|
|
if enable_LCM: |
|
self.pipe.enable_lora() |
|
self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config) |
|
guidance_scale = min(max(guidance_scale, 0), 1) |
|
else: |
|
self.pipe.disable_lora() |
|
self.pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
|
|
inputs, negative_prompt = apply_style(style_name, inputs, negative_prompt) |
|
|
|
|
|
face_image_base64 = data.get("face_image_base64") |
|
face_image_data = base64.b64decode(face_image_base64) |
|
face_image = Image.open(io.BytesIO(face_image_data)) |
|
|
|
pose_image_base64 = data.get("pose_image_base64") |
|
pose_image = None |
|
if pose_image_base64: |
|
pose_image_data = base64.b64decode(pose_image_base64) |
|
pose_image = Image.open(io.BytesIO(pose_image_data)) |
|
|
|
face_image = resize_img(face_image, max_side=1024) |
|
face_image_cv2 = convert_from_image_to_cv2(face_image) |
|
height, width, _ = face_image_cv2.shape |
|
|
|
|
|
faces = self.detect_faces(face_image_cv2) |
|
if not faces: |
|
return {"error": "No faces detected."} |
|
|
|
x, y, x1, y1, face_region = faces[0] |
|
face_kps = draw_kps(face_image, np.array([[x, y], [x1, y1]])) |
|
|
|
|
|
face_info = self.app.get(face_image_cv2) |
|
|
|
if not face_info: |
|
return {"error": "Face analysis failed."} |
|
|
|
face_info = face_info[0] |
|
face_emb = face_info["embedding"] |
|
|
|
img_controlnet = face_image |
|
if pose_image: |
|
pose_image = resize_img(pose_image, max_side=1024) |
|
img_controlnet = pose_image |
|
|
|
pose_image_cv2 = convert_from_image_to_cv2(pose_image) |
|
faces = self.detect_faces(pose_image_cv2) |
|
if faces: |
|
x, y, x1, y1, _ = faces[0] |
|
face_kps = draw_kps(pose_image, np.array([[x, y], [x1, y1]])) |
|
|
|
width, height = face_kps.size |
|
|
|
control_mask = np.zeros([height, width, 3]) |
|
x1, y1, x2, y2 = x, y, x1, y1 |
|
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) |
|
control_mask[y1:y2, x1:x2] = 255 |
|
control_mask = Image.fromarray(control_mask.astype(np.uint8)) |
|
|
|
controlnet_scales = { |
|
"pose": pose_strength, |
|
"canny": canny_strength |
|
} |
|
self.pipe.controlnet = MultiControlNetModel( |
|
[self.controlnet_identitynet] |
|
+ [self.controlnet_map[s] for s in controlnet_selection] |
|
) |
|
control_scales = [float(identitynet_strength_ratio)] + [ |
|
controlnet_scales[s] for s in controlnet_selection |
|
] |
|
control_images = [face_kps] + [ |
|
self.controlnet_map_fn[s](img_controlnet).resize((width, height)) |
|
for s in controlnet_selection |
|
] |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
print("Start inference...") |
|
print(f"[Debug] Prompt: {inputs}, \n[Debug] Neg Prompt: {negative_prompt}") |
|
|
|
self.pipe.set_ip_adapter_scale(adapter_strength_ratio) |
|
outputs = self.pipe( |
|
prompt=inputs, |
|
negative_prompt=negative_prompt, |
|
image_embeds=face_emb, |
|
image=control_images, |
|
control_mask=control_mask, |
|
controlnet_conditioning_scale=control_scales, |
|
num_inference_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
generator=generator, |
|
enhance_face_region=enhance_face_region |
|
) |
|
|
|
images = outputs.images |
|
|
|
|
|
if self.is_nsfw(images[0]): |
|
return {"error": "Generated image contains NSFW content and was discarded."} |
|
|
|
|
|
buffered = io.BytesIO() |
|
images[0].save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
return {"generated_image_base64": img_str} |
|
|