metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- common_voice
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-jana-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice
type: common_voice
config: cy
split: test
args: cy
metrics:
- name: Wer
type: wer
value: 0.7846383810509371
wav2vec2-large-xls-r-300m-jana-colab
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 1.4528
- Wer: 0.7846
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5925 | 1.67 | 200 | 1.4259 | 0.9056 |
1.1707 | 3.33 | 400 | 1.4610 | 0.9066 |
0.8991 | 5.0 | 600 | 1.3230 | 0.8607 |
0.6162 | 6.67 | 800 | 1.3388 | 0.8568 |
0.4192 | 8.33 | 1000 | 1.4365 | 0.8083 |
0.2729 | 10.0 | 1200 | 1.4528 | 0.7846 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3