File size: 1,190 Bytes
c7a9ea0 f351391 be46a80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
library_name: peft
base_model: bigscience/bloom-3b
---
Low Rank Adapter for Bloom decoder for question answering
# Example usage:
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from IPython.display import display, Markdown
peft_model_id = "Jayveersinh-Raj/bloom-que-ans"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
qa_model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(context, question):
batch = tokenizer(f"### CONTEXT\n{context}\n\n### QUESTION\n{question}\n\n### ANSWER\n", return_tensors='pt').to("cuda")
with torch.cuda.amp.autocast():
output_tokens = qa_model.generate(**batch, max_new_tokens=200)
display(Markdown((tokenizer.decode(output_tokens[0], skip_special_tokens=True))))
context = ""
question = "What is the best food?"
make_inference(context, question) |