|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-fr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-fr |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9738 |
|
- Rouge1: 16.2618 |
|
- Rouge2: 8.4157 |
|
- Rougel: 15.7746 |
|
- Rougelsum: 15.6448 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 6.4338 | 1.0 | 1399 | 3.2788 | 12.6697 | 4.9248 | 12.0308 | 12.0007 | |
|
| 3.8734 | 2.0 | 2798 | 3.1052 | 14.3438 | 7.2643 | 13.744 | 13.6593 | |
|
| 3.5793 | 3.0 | 4197 | 3.0230 | 15.8565 | 8.5311 | 15.2736 | 15.2018 | |
|
| 3.4243 | 4.0 | 5596 | 2.9943 | 16.1882 | 8.3288 | 15.6948 | 15.5725 | |
|
| 3.3277 | 5.0 | 6995 | 2.9845 | 16.5005 | 8.6609 | 16.0231 | 15.9789 | |
|
| 3.2652 | 6.0 | 8394 | 2.9793 | 15.8014 | 7.9576 | 15.3678 | 15.2699 | |
|
| 3.2344 | 7.0 | 9793 | 2.9707 | 16.529 | 8.2051 | 15.9864 | 15.8459 | |
|
| 3.1853 | 8.0 | 11192 | 2.9738 | 16.2618 | 8.4157 | 15.7746 | 15.6448 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|