roberta-base-qnli / README.md
lewtun's picture
lewtun HF staff
Add evaluation results on the qnli config of glue
5183b2d
|
raw
history blame
2.66 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: roberta-base-qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9245835621453414
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: qnli
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.924400512538898
            verified: true
          - name: Precision
            type: precision
            value: 0.9171997157071784
            verified: true
          - name: Recall
            type: recall
            value: 0.9348062296269467
            verified: true
          - name: AUC
            type: auc
            value: 0.9744865501321541
            verified: true
          - name: F1
            type: f1
            value: 0.9259192825112107
            verified: true
          - name: loss
            type: loss
            value: 0.2990749478340149
            verified: true

roberta-base-qnli

This model is a fine-tuned version of roberta-base on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2992
  • Accuracy: 0.9246

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2986 1.0 6547 0.2215 0.9171
0.243 2.0 13094 0.2321 0.9173
0.2048 3.0 19641 0.2992 0.9246
0.1629 4.0 26188 0.3538 0.9220
0.1308 5.0 32735 0.3533 0.9209
0.0846 6.0 39282 0.4277 0.9229

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1