metadata
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-qqp
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- type: accuracy
value: 0.9152609448429384
name: Accuracy
- type: f1
value: 0.8867138416771377
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: qqp
split: validation
metrics:
- type: accuracy
value: 0.9153104130596093
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBmYmQ4MjhlZDBkOWM4YzNiNTE3MDNhMDVlMDNhNmU4YjBiZjNmMDlhOGU2ZmZjMzAwODczNDA0NzkwMDJkMyIsInZlcnNpb24iOjF9.Xpv1jn9glM7lbsQNQvtCnQuueHeGLD0xzEaquc3HfB1p_zFvDRe38mv_B1aHt-YxR16AhfpIbENOM1sPTaAJDA
- type: precision
value: 0.8732009117551286
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTYyYWEwOWE0YjI1NWJiNWMwNTMxOTc4OTFmYWI4MTJmMDRkMmEwYWRhMDAzYzVmNDA3Y2YzMzJkMDIzYzNjYyIsInZlcnNpb24iOjF9.O0KMG-s8zO6-tAat0HZRL6MN1ZaZQ_Ng3a_-qC5FndZefHktoJDSD9hiuZFTmlY6Vn1UkDlvG1XnnAi1Gv6pBg
- type: recall
value: 0.9007725898555593
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ3MzQyM2FlZTc1Y2VjOGY4MGEwMzY2MGM0YjQwNzIwNmVjMmRlNmExYWFlZjU3ZTIyZmJkMGRiZmJkMGZhMCIsInZlcnNpb24iOjF9.eYT8-djtIVkGrr8rhjqE2arUYgXQY0so9o8F4dXkLQt1fNEVa9kxTicapp4h1yTfU2jPpH778J_nvMCzwqixDw
- type: auc
value: 0.9685235648551861
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWRiZGYyYjE5MDFmNWQzN2ZkNGRkMTA4ZTEwNzYxMTg1NTNlY2VjODM0ZDY0NzA1NjQ3MGE2ZWNmY2MxYmNkMyIsInZlcnNpb24iOjF9.aQOO1uk3UON5hgbuMkKK93Yt1aRH4TpBad-KDwjj0_IM9Y11_-itRf6vZuWCkr0gZmyZ-4b0PA4v_dvf88y8Aw
- type: f1
value: 0.8867724867724867
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgxODBkMjZmMjdlZjAyNjA3Njk5OTA4NWExOWQ4NzMwNDlhODNlYTQ1NWZhM2JmNjhjOTA4ZjQxY2QwYTk4ZiIsInZlcnNpb24iOjF9.AjkBwMnuDZVnIXs6EE_ooluFrJSavg58EmUt5Oux2feFP7SvUaWbnetkHIyzBIKb5MEyxuPkSxXU3A6Di-t6CA
- type: loss
value: 0.4435121417045593
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzU1ZDg0MGMyOGE0ZWM1Y2MwZjk0ZTAzNjc1MjBlZTUxNDIyNGZmN2EyZTUyZGM3N2E4NmQwOGUyNDBkOTVjNiIsInZlcnNpb24iOjF9.66LOnSclusAZY9uELpElvbcTuUVEJ95oXnspi9BHHw0tgwv38uUeq0cfojuQ_VsNN0UykiT0NooJdWaixpK4BA
roberta-base-qqp
This model is a fine-tuned version of roberta-base on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.4435
- Accuracy: 0.9153
- F1: 0.8867
- Combined Score: 0.9010
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.2751 | 1.0 | 22741 | 0.3057 | 0.8905 | 0.8512 | 0.8709 |
0.2443 | 2.0 | 45482 | 0.2530 | 0.9005 | 0.8710 | 0.8857 |
0.2157 | 3.0 | 68223 | 0.2643 | 0.9070 | 0.8769 | 0.8919 |
0.1838 | 4.0 | 90964 | 0.2806 | 0.9109 | 0.8815 | 0.8962 |
0.146 | 5.0 | 113705 | 0.3277 | 0.9113 | 0.8809 | 0.8961 |
0.1262 | 6.0 | 136446 | 0.3939 | 0.9113 | 0.8812 | 0.8962 |
0.0867 | 7.0 | 159187 | 0.4435 | 0.9153 | 0.8867 | 0.9010 |
0.0757 | 8.0 | 181928 | 0.4812 | 0.9147 | 0.8844 | 0.8996 |
0.0479 | 9.0 | 204669 | 0.5081 | 0.9151 | 0.8871 | 0.9011 |
0.0379 | 10.0 | 227410 | 0.5647 | 0.9149 | 0.8858 | 0.9003 |
Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1