roberta-base-qqp / README.md
JeremiahZ's picture
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#2)
749a735
|
raw
history blame
4.9 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: roberta-base-qqp
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: GLUE QQP
          type: glue
          args: qqp
        metrics:
          - type: accuracy
            value: 0.9152609448429384
            name: Accuracy
          - type: f1
            value: 0.8867138416771377
            name: F1
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: qqp
          split: validation
        metrics:
          - type: accuracy
            value: 0.9153104130596093
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBmYmQ4MjhlZDBkOWM4YzNiNTE3MDNhMDVlMDNhNmU4YjBiZjNmMDlhOGU2ZmZjMzAwODczNDA0NzkwMDJkMyIsInZlcnNpb24iOjF9.Xpv1jn9glM7lbsQNQvtCnQuueHeGLD0xzEaquc3HfB1p_zFvDRe38mv_B1aHt-YxR16AhfpIbENOM1sPTaAJDA
          - type: precision
            value: 0.8732009117551286
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTYyYWEwOWE0YjI1NWJiNWMwNTMxOTc4OTFmYWI4MTJmMDRkMmEwYWRhMDAzYzVmNDA3Y2YzMzJkMDIzYzNjYyIsInZlcnNpb24iOjF9.O0KMG-s8zO6-tAat0HZRL6MN1ZaZQ_Ng3a_-qC5FndZefHktoJDSD9hiuZFTmlY6Vn1UkDlvG1XnnAi1Gv6pBg
          - type: recall
            value: 0.9007725898555593
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ3MzQyM2FlZTc1Y2VjOGY4MGEwMzY2MGM0YjQwNzIwNmVjMmRlNmExYWFlZjU3ZTIyZmJkMGRiZmJkMGZhMCIsInZlcnNpb24iOjF9.eYT8-djtIVkGrr8rhjqE2arUYgXQY0so9o8F4dXkLQt1fNEVa9kxTicapp4h1yTfU2jPpH778J_nvMCzwqixDw
          - type: auc
            value: 0.9685235648551861
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWRiZGYyYjE5MDFmNWQzN2ZkNGRkMTA4ZTEwNzYxMTg1NTNlY2VjODM0ZDY0NzA1NjQ3MGE2ZWNmY2MxYmNkMyIsInZlcnNpb24iOjF9.aQOO1uk3UON5hgbuMkKK93Yt1aRH4TpBad-KDwjj0_IM9Y11_-itRf6vZuWCkr0gZmyZ-4b0PA4v_dvf88y8Aw
          - type: f1
            value: 0.8867724867724867
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgxODBkMjZmMjdlZjAyNjA3Njk5OTA4NWExOWQ4NzMwNDlhODNlYTQ1NWZhM2JmNjhjOTA4ZjQxY2QwYTk4ZiIsInZlcnNpb24iOjF9.AjkBwMnuDZVnIXs6EE_ooluFrJSavg58EmUt5Oux2feFP7SvUaWbnetkHIyzBIKb5MEyxuPkSxXU3A6Di-t6CA
          - type: loss
            value: 0.4435121417045593
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzU1ZDg0MGMyOGE0ZWM1Y2MwZjk0ZTAzNjc1MjBlZTUxNDIyNGZmN2EyZTUyZGM3N2E4NmQwOGUyNDBkOTVjNiIsInZlcnNpb24iOjF9.66LOnSclusAZY9uELpElvbcTuUVEJ95oXnspi9BHHw0tgwv38uUeq0cfojuQ_VsNN0UykiT0NooJdWaixpK4BA

roberta-base-qqp

This model is a fine-tuned version of roberta-base on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4435
  • Accuracy: 0.9153
  • F1: 0.8867
  • Combined Score: 0.9010

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.2751 1.0 22741 0.3057 0.8905 0.8512 0.8709
0.2443 2.0 45482 0.2530 0.9005 0.8710 0.8857
0.2157 3.0 68223 0.2643 0.9070 0.8769 0.8919
0.1838 4.0 90964 0.2806 0.9109 0.8815 0.8962
0.146 5.0 113705 0.3277 0.9113 0.8809 0.8961
0.1262 6.0 136446 0.3939 0.9113 0.8812 0.8962
0.0867 7.0 159187 0.4435 0.9153 0.8867 0.9010
0.0757 8.0 181928 0.4812 0.9147 0.8844 0.8996
0.0479 9.0 204669 0.5081 0.9151 0.8871 0.9011
0.0379 10.0 227410 0.5647 0.9149 0.8858 0.9003

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1