metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tecla
metrics:
- accuracy
model-index:
- name: roberta-base-ca-finetuned-mnli
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tecla
type: tecla
args: tecla
metrics:
- name: Accuracy
type: accuracy
value: 0.7361816335412737
roberta-base-ca-finetuned-mnli
This model is a fine-tuned version of BSC-TeMU/roberta-base-ca on the tecla dataset. It achieves the following results on the evaluation set:
- Loss: 0.9354
- Accuracy: 0.7362
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.8465 | 1.0 | 6888 | 0.8222 | 0.6990 |
0.6966 | 2.0 | 13776 | 0.7872 | 0.7157 |
0.5643 | 3.0 | 20664 | 0.8060 | 0.7268 |
0.4435 | 4.0 | 27552 | 0.8470 | 0.7333 |
0.3206 | 5.0 | 34440 | 0.9354 | 0.7362 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3