led-base-16384-finetuned-summscreen-bestval-100-genlen-10-epochs
This model is a fine-tuned version of allenai/led-base-16384 on the SummScreen dataset. It achieves the following results on the evaluation set:
- Loss: 3.1833
- Rouge1: 31.6225
- Rouge2: 6.7688
- Rougel: 18.5526
- Rougelsum: 27.3033
- Gen Len: 81.8209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.1147 | 0.99 | 3500 | 3.0409 | 30.2997 | 6.0055 | 17.6836 | 26.3062 | 92.0363 |
2.7805 | 1.99 | 7000 | 2.9981 | 31.0651 | 6.1553 | 18.2326 | 26.6136 | 84.1678 |
2.6362 | 2.98 | 10500 | 3.0013 | 31.0598 | 6.4268 | 18.3805 | 26.7816 | 81.1338 |
2.4646 | 3.98 | 14000 | 3.0267 | 31.46 | 6.5898 | 18.5842 | 27.165 | 83.4966 |
2.2546 | 4.97 | 17500 | 3.0448 | 31.4952 | 6.3709 | 18.2124 | 27.111 | 86.1701 |
2.1432 | 5.97 | 21000 | 3.0840 | 31.6475 | 6.663 | 18.504 | 27.2444 | 81.3583 |
2.0585 | 6.96 | 24500 | 3.1105 | 31.3432 | 6.7862 | 18.4461 | 27.0081 | 76.4671 |
1.9243 | 7.96 | 28000 | 3.1558 | 31.5712 | 6.6456 | 18.3928 | 27.2066 | 81.1769 |
1.8828 | 8.95 | 31500 | 3.1686 | 31.6361 | 6.4783 | 18.4167 | 27.2049 | 83.0658 |
1.8403 | 9.95 | 35000 | 3.1833 | 31.6225 | 6.7688 | 18.5526 | 27.3033 | 81.8209 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.