File size: 9,174 Bytes
b90f2b8 ace3987 b90f2b8 ace3987 283ed50 fb335df 283ed50 fb335df 283ed50 d3b74de b90f2b8 a42c18b b90f2b8 104c555 b90f2b8 104c555 b90f2b8 104c555 b90f2b8 a42c18b b90f2b8 97d49ab b90f2b8 a42c18b b90f2b8 a42c18b b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 ace3987 b90f2b8 12b144a b90f2b8 a42c18b e5e754a caba06f 4287315 e5e754a 4287315 b90f2b8 ace3987 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
pipeline_tag: sentence-similarity
lang:
- sv
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
widget:
- source_sentence: "Mannen åt mat."
sentences:
- "Han förtärde en närande och nyttig måltid."
- "Det var ett sunkigt hak med ganska gott käk."
- "Han inmundigade middagen tillsammans med ett glas rödvin."
- "Potatischips är jättegoda."
- "Tryck på knappen för att få tala med kundsupporten."
example_title: "Mat"
- source_sentence: "Kan jag deklarera digitalt från utlandet?"
sentences:
- "Du som befinner dig i utlandet kan deklarera digitalt på flera olika sätt."
- "Du som har kvarskatt att betala ska göra en inbetalning till ditt skattekonto."
- "Efter att du har deklarerat går vi igenom uppgifterna i din deklaration och räknar ut din skatt."
- "I din deklaration som du får från oss har vi räknat ut vad du ska betala eller få tillbaka."
- "Tryck på knappen för att få tala med kundsupporten."
example_title: "Skatteverket FAQ"
- source_sentence: "Hon kunde göra bakåtvolter."
sentences:
- "Hon var atletisk."
- "Hon var bra på gymnastik."
- "Hon var inte atletisk."
- "Hon var oförmögen att flippa baklänges."
example_title: "Gymnastik"
---
# KBLab/sentence-bert-swedish-cased
This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([paraphrase-mpnet-base-v2](https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model.
A more detailed description of the model can be found in an article we published on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]
model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
The model was primarily evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase). This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks. We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. The model achieved a Pearson correlation coefficient of **0.918** and a Spearman's rank correlation coefficient of **0.911**.
The following code snippet can be used to reproduce the above results:
```python
from sentence_transformers import SentenceTransformer
import pandas as pd
df = pd.read_csv(
"sweparaphrase-dev-165.csv",
sep="\t",
header=None,
names=[
"original_id",
"source",
"type",
"sentence_swe1",
"sentence_swe2",
"score",
"sentence1",
"sentence2",
],
)
model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()
# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)
cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()
df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
```
Examples how to evaluate the model on other test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).
## Training
An article with more details on data and the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/).
Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, EUbookshop, EMEA, TED2020, Tatoeba and OpenSubtitles.
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MSELoss.MSELoss`
Parameters of the fit()-Method:
```
{
"epochs": 2,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"eps": 1e-06,
"lr": 8e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 5000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
This model was trained by KBLab, a data lab at the National Library of Sweden.
You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .
```
@misc{rekathati2021introducing,
author = {Rekathati, Faton},
title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},
url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},
year = {2021}
}
```
## Acknowledgements
We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).
|