File size: 9,174 Bytes
b90f2b8
 
ace3987
 
b90f2b8
ace3987
 
 
 
283ed50
 
 
 
 
 
 
 
 
fb335df
283ed50
fb335df
 
 
 
283ed50
 
d3b74de
 
 
 
 
 
 
b90f2b8
 
 
 
 
 
a42c18b
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
104c555
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104c555
b90f2b8
 
104c555
 
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a42c18b
b90f2b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97d49ab
b90f2b8
a42c18b
b90f2b8
 
 
a42c18b
 
 
b90f2b8
 
 
 
 
ace3987
b90f2b8
 
 
 
 
 
 
 
 
 
 
ace3987
b90f2b8
 
 
ace3987
b90f2b8
 
ace3987
b90f2b8
 
 
ace3987
b90f2b8
 
 
 
 
 
 
 
12b144a
b90f2b8
 
 
 
 
 
 
 
 
a42c18b
 
e5e754a
caba06f
 
 
 
 
4287315
e5e754a
4287315
b90f2b8
 
ace3987
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
pipeline_tag: sentence-similarity
lang:
  - sv
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
widget:
- source_sentence: "Mannen åt mat."
  sentences:
    - "Han förtärde en närande och nyttig måltid."
    - "Det var ett sunkigt hak med ganska gott käk."
    - "Han inmundigade middagen tillsammans med ett glas rödvin."
    - "Potatischips är jättegoda."
    - "Tryck på knappen för att få tala med kundsupporten."
  example_title: "Mat"
- source_sentence: "Kan jag deklarera digitalt från utlandet?"
  sentences:
    - "Du som befinner dig i utlandet kan deklarera digitalt på flera olika sätt."
    - "Du som har kvarskatt att betala ska göra en inbetalning till ditt skattekonto."
    - "Efter att du har deklarerat går vi igenom uppgifterna i din deklaration och räknar ut din skatt."
    - "I din deklaration som du får från oss har vi räknat ut vad du ska betala eller få tillbaka."
    - "Tryck på knappen för att få tala med kundsupporten."
  example_title: "Skatteverket FAQ"
- source_sentence: "Hon kunde göra bakåtvolter."
  sentences:
    - "Hon var atletisk."
    - "Hon var bra på gymnastik."
    - "Hon var inte atletisk."
    - "Hon var oförmögen att flippa baklänges."
  example_title: "Gymnastik"
---

# KBLab/sentence-bert-swedish-cased

This is a [sentence-transformers](https://www.SBERT.net) model: It maps Swedish sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a bilingual Swedish-English model trained according to instructions in the paper [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/pdf/2004.09813.pdf) and the [documentation](https://www.sbert.net/examples/training/multilingual/README.html) accompanying its companion python package. We have used the strongest available pretrained English Bi-Encoder ([paraphrase-mpnet-base-v2](https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models)) as a teacher model, and the pretrained Swedish [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) as the student model. 

A more detailed description of the model can be found in an article we published on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/). 

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["Det här är en exempelmening", "Varje exempel blir konverterad"]

model = SentenceTransformer('KBLab/sentence-bert-swedish-cased')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['Det här är en exempelmening', 'Varje exempel blir konverterad']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('KBLab/sentence-bert-swedish-cased')
model = AutoModel.from_pretrained('KBLab/sentence-bert-swedish-cased')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

The model was primarily evaluated on [SweParaphrase v1.0](https://spraakbanken.gu.se/en/resources/sweparaphrase). This test set is part of [SuperLim](https://spraakbanken.gu.se/en/resources/superlim) -- a Swedish evaluation suite for natural langage understanding tasks.  We calculated Pearson and Spearman correlation between predicted model similarity scores and the human similarity score labels. The model achieved a Pearson correlation coefficient of **0.918** and a Spearman's rank correlation coefficient of **0.911**.

The following code snippet can be used to reproduce the above results:

```python
from sentence_transformers import SentenceTransformer
import pandas as pd

df = pd.read_csv(
    "sweparaphrase-dev-165.csv",
    sep="\t",
    header=None,
    names=[
        "original_id",
        "source",
        "type",
        "sentence_swe1",
        "sentence_swe2",
        "score",
        "sentence1",
        "sentence2",
    ],
)

model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")

sentences1 = df["sentence_swe1"].tolist()
sentences2 = df["sentence_swe2"].tolist()

# Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)

# Compute cosine similarity after normalizing
embeddings1 /= embeddings1.norm(dim=-1, keepdim=True)
embeddings2 /= embeddings2.norm(dim=-1, keepdim=True)

cosine_scores = embeddings1 @ embeddings2.t()
sentence_pair_scores = cosine_scores.diag()

df["model_score"] = sentence_pair_scores.cpu().tolist()
print(df[["score", "model_score"]].corr(method="spearman"))
print(df[["score", "model_score"]].corr(method="pearson"))
```

Examples how to evaluate the model on other test sets of the SuperLim suites can be found on the following links: [evaluate_faq.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_faq.py) (Swedish FAQ), [evaluate_swesat.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_swesat.py) (SweSAT synonyms), [evaluate_supersim.py](https://github.com/kb-labb/swedish-sbert/blob/main/evaluate_supersim.py) (SuperSim).

## Training

An article with more details on data and the model can be found on the [KBLab blog](https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/). 

Around 14.6 million sentences from English-Swedish parallel corpuses were used to train the model. Data was sourced from the [Open Parallel Corpus](https://opus.nlpl.eu/) (OPUS) and downloaded via the python package [opustools](https://pypi.org/project/opustools/). Datasets used were: JW300, Europarl, EUbookshop, EMEA, TED2020, Tatoeba and OpenSubtitles. 

The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 180513 with parameters:
```
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MSELoss.MSELoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 2,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "eps": 1e-06,
        "lr": 8e-06
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 5000,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
This model was trained by KBLab, a data lab at the National Library of Sweden. 

You can cite the article on our blog: https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/ .

```
@misc{rekathati2021introducing,  
  author = {Rekathati, Faton},  
  title = {The KBLab Blog: Introducing a Swedish Sentence Transformer},  
  url = {https://kb-labb.github.io/posts/2021-08-23-a-swedish-sentence-transformer/},  
  year = {2021}  
}
```

## Acknowledgements

We gratefully acknowledge the HPC RIVR consortium ([www.hpc-rivr.si](https://www.hpc-rivr.si/)) and EuroHPC JU ([eurohpc-ju.europa.eu/](https://eurohpc-ju.europa.eu/)) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science ([www.izum.si](https://www.izum.si/)).