speaker-segmentation-fine-tuned-backup-uganda

This model is a fine-tuned version of pyannote/segmentation-3.0 on the KMayanja/backup_uganda default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2271
  • Der: 0.0667
  • False Alarm: 0.0188
  • Missed Detection: 0.0260
  • Confusion: 0.0219

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.1819 1.0 266 0.2174 0.0663 0.0186 0.0249 0.0228
0.1659 2.0 532 0.2177 0.0669 0.0169 0.0278 0.0221
0.1549 3.0 798 0.2170 0.0659 0.0181 0.0261 0.0217
0.1535 4.0 1064 0.2222 0.0666 0.0195 0.0251 0.0220
0.1541 5.0 1330 0.2271 0.0667 0.0188 0.0260 0.0219

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for KMayanja/speaker-segmentation-fine-tuned-backup-uganda

Finetuned
(40)
this model

Dataset used to train KMayanja/speaker-segmentation-fine-tuned-backup-uganda