About :
AlpaRA 7B, a model for medical dialogue understanding. Fine-tuned using the Alpaca configuration on a curated 5,000-instruction dataset capturing nuances in patient-doctor conversations. Use Parameter Efficient Fine Tuning (PEFT) and Low Rank Adaptation (LoRA), make this model efficient on consumer-grade GPUs.
How to Use :
Load the AlpaRA model
from peft import PeftModel
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf")
model = LlamaForCausalLM.from_pretrained(
"yahma/llama-7b-hf",
load_in_8bit=True,
device_map="auto"
)
model = PeftModel.from_pretrained(model, "KalbeDigitalLab/alpara-7b-peft")
Prompt Template :
Feel free to change the instruction
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
"how to cure flu?"
### Response:"""
Evaluation
inputs = tokenizer(
PROMPT,
return_tensors="pt"
)
input_ids = inputs["input_ids"].cuda()
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=512,
)
for s in generation_output.sequences:
result = tokenizer.decode(s).split("### Response:")[1]
print(result)
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for KalbeDigitalLab/alpara-7b-peft
Base model
yahma/llama-7b-hf