lewtun's picture
lewtun HF staff
End of training
655c515
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-large-classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-large-classifier
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4924
- Accuracy: 0.7255
- F1: 0.7230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.4852 | 1.0 | 15898 | 0.4908 | 0.7223 | 0.7143 |
| 0.4751 | 2.0 | 31796 | 0.4924 | 0.7255 | 0.7230 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0