crazy-hair / README.md
Keltezaa's picture
Update README.md
ff06fac verified
metadata
license: other
license_name: bespoke-lora-trained-license
license_link: >-
  https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=1&allowDerivatives=True&allowDifferentLicense=False
tags:
  - text-to-image
  - stable-diffusion
  - lora
  - diffusers
  - template:sd-lora
  - migrated
  - style
  - woman
  - man
  - hair
  - haircut
  - hairstyle
  - styles
  - hairs
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: oxwn_crazy_hair
widget:
  - text: ' '
    output:
      url: 26476785.jpeg
  - text: ' '
    output:
      url: 26476797.jpeg
  - text: ' '
    output:
      url: 26476844.jpeg
  - text: ' '
    output:
      url: 26476890.jpeg
  - text: ' '
    output:
      url: 26476946.jpeg
  - text: ' '
    output:
      url: 26476982.jpeg
  - text: ' '
    output:
      url: 26476999.jpeg
  - text: ' '
    output:
      url: 26477045.jpeg
  - text: ' '
    output:
      url: 26477133.jpeg
  - text: ' '
    output:
      url: 26477211.jpeg
  - text: ' '
    output:
      url: 26477214.jpeg

CRAZY HAIR

Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt
Prompt

Model description

Here is a LoRA model that I primarily designed to achieve very expressive and voluminous hair, which works well both on photorealistic images and toon-style characters.

Training: 2000 steps

Trigger: oxwn_crazy_hair

Enjoy !

Trigger words

You should use oxwn_crazy_hair to trigger the image generation.

Download model

Weights for this model are available in Safetensors format.

Download them in the Files & versions tab.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to(device)
pipeline.load_lora_weights('Keltezaa/crazy-hair', weight_name='oxwn_crazy_hair_000002000.safetensors')
image = pipeline('`oxwn_crazy_hair`').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers