|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
license: mit |
|
datasets: |
|
- squad |
|
- eli5 |
|
- sentence-transformers/embedding-training-data |
|
language: |
|
- da |
|
library_name: sentence-transformers |
|
--- |
|
|
|
*New version available, trained on more data and otherwise identical [KennethTM/MiniLM-L6-danish-encoder-v2](https://huggingface.co/KennethTM/MiniLM-L6-danish-encoder-v2)* |
|
|
|
# MiniLM-L6-danish-encoder |
|
|
|
This is a lightweight (~22 M parameters) [sentence-transformers](https://www.SBERT.net) model for Danish NLP: It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
The maximum sequence length is 512 tokens. |
|
|
|
The model was not pre-trained from scratch but adapted from the English version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) with a [Danish tokenizer](https://huggingface.co/KennethTM/bert-base-uncased-danish). |
|
|
|
Trained on ELI5 and SQUAD data machine translated from English to Danish. |
|
|
|
# Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."] |
|
|
|
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
# Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder') |
|
model = AutoModel.from_pretrained('KennethTM/MiniLM-L6-danish-encoder') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
# Normalize embeddings |
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |