ViT_bloodmnist_std_60
This model is a fine-tuned version of google/vit-base-patch16-224 on the medmnist-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3387
- Accuracy: 0.8913
- F1: 0.8681
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.7924 | 0.0595 | 200 | 1.7254 | 0.4106 | 0.3373 |
0.4527 | 0.1189 | 400 | 1.2129 | 0.6641 | 0.5830 |
0.4004 | 0.1784 | 600 | 0.9461 | 0.7547 | 0.6592 |
0.3657 | 0.2378 | 800 | 0.7647 | 0.8084 | 0.7425 |
0.3506 | 0.2973 | 1000 | 0.6377 | 0.8043 | 0.7888 |
0.3081 | 0.3567 | 1200 | 0.6453 | 0.8055 | 0.7728 |
0.2848 | 0.4162 | 1400 | 0.6006 | 0.8195 | 0.7385 |
0.28 | 0.4756 | 1600 | 0.8017 | 0.7097 | 0.6680 |
0.3041 | 0.5351 | 1800 | 0.4496 | 0.8586 | 0.8187 |
0.272 | 0.5945 | 2000 | 0.7200 | 0.7541 | 0.7126 |
0.259 | 0.6540 | 2200 | 0.5110 | 0.8131 | 0.7867 |
0.2524 | 0.7134 | 2400 | 0.4057 | 0.8633 | 0.8343 |
0.2439 | 0.7729 | 2600 | 0.4060 | 0.8604 | 0.8288 |
0.2422 | 0.8323 | 2800 | 0.4496 | 0.8627 | 0.8229 |
0.2332 | 0.8918 | 3000 | 0.4147 | 0.8586 | 0.8157 |
0.2192 | 0.9512 | 3200 | 0.3414 | 0.8756 | 0.8578 |
0.212 | 1.0107 | 3400 | 0.4139 | 0.8464 | 0.8048 |
0.1738 | 1.0702 | 3600 | 0.5111 | 0.8213 | 0.7703 |
0.1718 | 1.1296 | 3800 | 0.3725 | 0.8674 | 0.8398 |
0.1679 | 1.1891 | 4000 | 0.4632 | 0.8400 | 0.8283 |
0.1706 | 1.2485 | 4200 | 0.4331 | 0.8511 | 0.8216 |
0.1602 | 1.3080 | 4400 | 0.4359 | 0.8382 | 0.8094 |
0.1502 | 1.3674 | 4600 | 0.5608 | 0.7903 | 0.7278 |
0.1713 | 1.4269 | 4800 | 0.3495 | 0.8762 | 0.8555 |
0.1544 | 1.4863 | 5000 | 0.5389 | 0.8072 | 0.7830 |
0.1477 | 1.5458 | 5200 | 0.3790 | 0.8645 | 0.8318 |
0.1515 | 1.6052 | 5400 | 0.4332 | 0.8300 | 0.7977 |
0.1465 | 1.6647 | 5600 | 0.5368 | 0.8230 | 0.7546 |
0.1409 | 1.7241 | 5800 | 0.4630 | 0.8493 | 0.8004 |
0.1294 | 1.7836 | 6000 | 0.3530 | 0.8803 | 0.8396 |
0.1252 | 1.8430 | 6200 | 0.3822 | 0.875 | 0.8410 |
0.1273 | 1.9025 | 6400 | 0.2833 | 0.9042 | 0.8802 |
0.1196 | 1.9620 | 6600 | 0.3610 | 0.8791 | 0.8407 |
0.1018 | 2.0214 | 6800 | 0.3968 | 0.8581 | 0.8354 |
0.0692 | 2.0809 | 7000 | 0.4695 | 0.8458 | 0.8122 |
0.0674 | 2.1403 | 7200 | 0.4450 | 0.8534 | 0.8136 |
0.0615 | 2.1998 | 7400 | 0.3819 | 0.8721 | 0.8483 |
0.0574 | 2.2592 | 7600 | 0.3725 | 0.875 | 0.8468 |
0.067 | 2.3187 | 7800 | 0.4728 | 0.8481 | 0.8078 |
0.0684 | 2.3781 | 8000 | 0.3483 | 0.8873 | 0.8590 |
0.066 | 2.4376 | 8200 | 0.3763 | 0.8797 | 0.8514 |
0.0521 | 2.4970 | 8400 | 0.4029 | 0.8657 | 0.8377 |
0.0553 | 2.5565 | 8600 | 0.4100 | 0.8697 | 0.8382 |
0.0534 | 2.6159 | 8800 | 0.3810 | 0.8762 | 0.8469 |
0.0475 | 2.6754 | 9000 | 0.4043 | 0.8703 | 0.8416 |
0.054 | 2.7348 | 9200 | 0.4014 | 0.8762 | 0.8460 |
0.0526 | 2.7943 | 9400 | 0.4015 | 0.875 | 0.8439 |
0.0481 | 2.8537 | 9600 | 0.4047 | 0.8779 | 0.8455 |
0.0442 | 2.9132 | 9800 | 0.3997 | 0.8773 | 0.8449 |
0.0372 | 2.9727 | 10000 | 0.4131 | 0.8762 | 0.8433 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 216
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for KiViDrag/ViT_bloodmnist_std_60
Base model
google/vit-base-patch16-224Evaluation results
- Accuracy on medmnist-v2validation set self-reported0.891
- F1 on medmnist-v2validation set self-reported0.868