Kittipot's picture
update model card README.md
ad07ab5
|
raw
history blame
4.05 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - wisesight_sentiment
model-index:
  - name: Wangchanberta-Depress-Finetuned
    results: []

Wangchanberta-Depress-Finetuned

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the wisesight_sentiment dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.0114 0.08 200 0.9538
0.8617 0.15 400 0.8280
0.7882 0.23 600 0.7472
0.7132 0.3 800 0.7264
0.7226 0.38 1000 0.7265
0.6854 0.45 1200 0.6792
0.621 0.53 1400 0.6451
0.6093 0.61 1600 0.6364
0.6099 0.68 1800 0.6128
0.5766 0.76 2000 0.6388
0.6033 0.83 2200 0.6148
0.5966 0.91 2400 0.6440
0.6208 0.98 2600 0.5910
0.5178 1.06 2800 0.6340
0.4863 1.13 3000 0.7177
0.4852 1.21 3200 0.6766
0.4711 1.29 3400 0.6739
0.5203 1.36 3600 0.6429
0.5167 1.44 3800 0.6539
0.5053 1.51 4000 0.6172
0.5076 1.59 4200 0.6053
0.4704 1.66 4400 0.6474
0.4807 1.74 4600 0.6225
0.4792 1.82 4800 0.6282
0.5177 1.89 5000 0.6011
0.4839 1.97 5200 0.6231
0.4155 2.04 5400 0.6668
0.3923 2.12 5600 0.6886
0.3713 2.19 5800 0.6895
0.364 2.27 6000 0.6886
0.3774 2.34 6200 0.7117
0.4001 2.42 6400 0.7081
0.3531 2.5 6600 0.7465
0.3768 2.57 6800 0.7706
0.3324 2.65 7000 0.7456
0.3597 2.72 7200 0.7507
0.3868 2.8 7400 0.7542
0.4141 2.87 7600 0.7223
0.3701 2.95 7800 0.7374
0.3175 3.03 8000 0.7615
0.2951 3.1 8200 0.7880
0.2885 3.18 8400 0.8158
0.2913 3.25 8600 0.8565
0.2815 3.33 8800 0.8649
0.2748 3.4 9000 0.8783
0.2776 3.48 9200 0.8851
0.2982 3.56 9400 0.8922
0.2939 3.63 9600 0.8796
0.2712 3.71 9800 0.8873
0.2918 3.78 10000 0.8973
0.3144 3.86 10200 0.8978
0.2988 3.93 10400 0.8951

Framework versions

  • Transformers 4.11.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.10.3