metadata
language:
- lzh
tags:
- classical chinese
- literary chinese
- ancient chinese
- token-classification
- pos
- dependency-parsing
datasets:
- universal_dependencies
license: apache-2.0
pipeline_tag: token-classification
widget:
- text: 孟子見梁惠王
roberta-classical-chinese-base-ud-goeswith
Model Description
This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing (using goeswith
for subwords), derived from roberta-classical-chinese-base-char and UD_Classical_Chinese-Kyoto.
How to Use
class UDgoeswith(object):
def __init__(self,bert):
from transformers import AutoTokenizer,AutoModelForTokenClassification
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForTokenClassification.from_pretrained(bert)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=self.tokenizer(text,return_offsets_mapping=True)
v=w["input_ids"]
x=[v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)]
with torch.no_grad():
e=self.model(input_ids=torch.tensor(x)).logits.numpy()[:,1:-2,:]
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
m=numpy.full((e.shape[0]+1,e.shape[1]+1),numpy.nan)
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
p=numpy.zeros(m.shape)
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
for i in range(1,m.shape[0]):
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text+"\n"
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
for i,(s,e) in enumerate(v,1):
q=self.model.config.id2label[p[i,h[i]]].split("|")
u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=UDgoeswith("KoichiYasuoka/roberta-classical-chinese-base-ud-goeswith")
print(nlp("孟子見梁惠王"))
ufal.chu-liu-edmonds is required.