File size: 1,509 Bytes
01b311c
 
ec30895
01b311c
ec30895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
pipeline_tag: text-generation
---

# Bigram Language Model

## Overview
This repository contains a simple Bigram Language Model implemented in PyTorch. The model is trained to predict the next character in a sequence, given the current character. It's a character-level model and can be used for tasks like text generation.

## Model Details
- **Model Type**: Character-level Language Model
- **Architecture**: Simple lookup table for character bigrams
- **Training Data**: [https://huggingface.co/datasets/csebuetnlp/xlsum/viewer/bengali]

## Requirements
- Python 3.x
- PyTorch
- JSON (for loading the tokenizer)

## Installation
First, clone this repository:


## Loading the Model
To load the model, you need to initialize it with the vocabulary size and load the pre-trained weights:

```python
import torch
from model import BigramLanguageModel 

vocab_size = 225  
model = BigramLanguageModel(vocab_size)

model.load_state_dict(torch.load('path_to_your_model.pth', map_location=torch.device('cpu')))
model.eval()

import json

with open('tokenizer_mappings.json', 'r', encoding='utf-8') as f:
    mappings = json.load(f)
    stoi = mappings['stoi']
    itos = mappings['itos']

# Example usage
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])


context = torch.tensor([encode("Your initial text")], dtype=torch.long)
generated_text_indices = model.generate(context, max_new_tokens=100)
print(decode(generated_text_indices[0].tolist()))