|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-de |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-de |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5620 |
|
- Rouge1: 19.3915 |
|
- Rouge2: 10.59 |
|
- Rougel: 18.7811 |
|
- Rougelsum: 18.9784 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 2.8704 | 1.0 | 651 | 2.5780 | 17.9954 | 9.8425 | 17.421 | 17.5202 | |
|
| 2.8213 | 2.0 | 1302 | 2.5719 | 18.3944 | 9.9329 | 17.8166 | 17.9457 | |
|
| 2.7672 | 3.0 | 1953 | 2.5643 | 17.4605 | 9.7057 | 16.9978 | 17.0939 | |
|
| 2.7311 | 4.0 | 2604 | 2.5633 | 19.5332 | 11.0145 | 19.0127 | 19.1008 | |
|
| 2.6985 | 5.0 | 3255 | 2.5672 | 19.3155 | 10.1678 | 18.6334 | 18.8022 | |
|
| 2.6644 | 6.0 | 3906 | 2.5589 | 19.3282 | 10.3801 | 18.8039 | 18.9073 | |
|
| 2.654 | 7.0 | 4557 | 2.5540 | 19.2307 | 10.4068 | 18.6708 | 18.896 | |
|
| 2.6318 | 8.0 | 5208 | 2.5620 | 19.3915 | 10.59 | 18.7811 | 18.9784 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|