NeuralFusion-7b-Dare-Ties
NeuralFusion-7b-Dare-Ties is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: mlabonne/Monarch-7B
# no parameters necessary for base model
- model: Kukedlc/NeuralMaxime-7B-slerp
parameters:
density: 0.65
weight: 0.36
- model: Kukedlc/Fasciculus-Arcuatus-7B-slerp
parameters:
density: 0.6
weight: 0.34
- model: Kukedlc/NeoCortex-7B-slerp
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mlabonne/Monarch-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralFusion-7b-Dare-Ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.94 |
AI2 Reasoning Challenge (25-Shot) | 73.21 |
HellaSwag (10-Shot) | 88.96 |
MMLU (5-Shot) | 64.77 |
TruthfulQA (0-shot) | 73.32 |
Winogrande (5-shot) | 85.56 |
GSM8k (5-shot) | 69.83 |
- Downloads last month
- 69
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Kukedlc/NeuralFusion-7b-Dare-Ties
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard73.210
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard88.960
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.770
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard73.320
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard85.560
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard69.830