Neural Krishna DPO

Fine-tuning + lnegth(choose)

  • Training Args:
# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    load_in_4bit=True
)
model.config.use_cache = False



# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=120,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=50,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    max_prompt_length=1024,
    max_length=1536,
)

# Fine-tune model with DPO
dpo_trainer.train()

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.00
AI2 Reasoning Challenge (25-Shot) 74.06
HellaSwag (10-Shot) 88.97
MMLU (5-Shot) 64.41
TruthfulQA (0-shot) 76.19
Winogrande (5-shot) 84.29
GSM8k (5-shot) 68.08
Downloads last month
174
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kukedlc/NeuralKrishna-7B-V2-DPO

Merges
2 models
Quantizations
3 models

Spaces using Kukedlc/NeuralKrishna-7B-V2-DPO 6

Evaluation results