### Train Dataset Means and stds | |
lat_mean = 39.951572994535354 | |
lat_std = 0.0006556104083785816 | |
lon_mean = -75.19137012508818 | |
lon_std = 0.0006895844560639971 | |
### Custom Model Class | |
from transformers import ViTModel | |
class ViTGPSModel(nn.Module): | |
def __init__(self, output_size=2): | |
super().__init__() | |
self.vit = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k") | |
self.regression_head = nn.Linear(self.vit.config.hidden_size, output_size) | |
def forward(self, x): | |
cls_embedding = self.vit(x).last_hidden_state[:, 0, :] | |
return self.regression_head(cls_embedding) | |
### Running Inference | |
model_path = hf_hub_download(repo_id="Latitude-Attitude/vit-gps-coordinates-predictor", filename="vit-gps-coordinates-predictor.pth") | |
model = torch.load(model_path) | |
model.eval() | |
with torch.no_grad(): | |
for images in dataloader: | |
images = images.to(device) | |
outputs = model(images) | |
preds = outputs.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean]) |