wav2vec2-large-mms-1b-nhi-adapterft-ilv
This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5244
- Wer: 0.3611
- Cer: 0.1060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 20
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0326 | 1.6529 | 200 | 0.6958 | 0.6481 | 0.1936 |
0.8213 | 3.3058 | 400 | 0.6097 | 0.5563 | 0.1615 |
0.7669 | 4.9587 | 600 | 0.5498 | 0.5405 | 0.1580 |
0.7058 | 6.6116 | 800 | 0.5066 | 0.5015 | 0.1430 |
0.6592 | 8.2645 | 1000 | 0.5060 | 0.4907 | 0.1388 |
0.6518 | 9.9174 | 1200 | 0.4823 | 0.4772 | 0.1357 |
0.6181 | 11.5702 | 1400 | 0.4753 | 0.4691 | 0.1331 |
0.5987 | 13.2231 | 1600 | 0.4944 | 0.4761 | 0.1369 |
0.5762 | 14.8760 | 1800 | 0.4588 | 0.4510 | 0.1259 |
0.5702 | 16.5289 | 2000 | 0.4705 | 0.4533 | 0.1272 |
0.5308 | 18.1818 | 2200 | 0.4797 | 0.4549 | 0.1287 |
0.5317 | 19.8347 | 2400 | 0.4807 | 0.4680 | 0.1310 |
0.5179 | 21.4876 | 2600 | 0.4509 | 0.4286 | 0.1235 |
0.5116 | 23.1405 | 2800 | 0.4451 | 0.4363 | 0.1242 |
0.4869 | 24.7934 | 3000 | 0.4246 | 0.4267 | 0.1192 |
0.47 | 26.4463 | 3200 | 0.4474 | 0.4340 | 0.1249 |
0.4663 | 28.0992 | 3400 | 0.4379 | 0.4120 | 0.1191 |
0.4557 | 29.7521 | 3600 | 0.4476 | 0.4236 | 0.1212 |
0.4564 | 31.4050 | 3800 | 0.4248 | 0.4062 | 0.1171 |
0.4454 | 33.0579 | 4000 | 0.4370 | 0.4120 | 0.1189 |
0.4435 | 34.7107 | 4200 | 0.4282 | 0.4090 | 0.1182 |
0.439 | 36.3636 | 4400 | 0.4233 | 0.4008 | 0.1158 |
0.4299 | 38.0165 | 4600 | 0.4301 | 0.4101 | 0.1177 |
0.4125 | 39.6694 | 4800 | 0.4426 | 0.4074 | 0.1190 |
0.401 | 41.3223 | 5000 | 0.4378 | 0.4140 | 0.1186 |
0.4034 | 42.9752 | 5200 | 0.4308 | 0.3993 | 0.1161 |
0.4052 | 44.6281 | 5400 | 0.4399 | 0.4001 | 0.1160 |
0.3889 | 46.2810 | 5600 | 0.4443 | 0.4047 | 0.1169 |
0.3976 | 47.9339 | 5800 | 0.4345 | 0.3835 | 0.1171 |
0.3737 | 49.5868 | 6000 | 0.4505 | 0.3916 | 0.1133 |
0.3845 | 51.2397 | 6200 | 0.4342 | 0.3966 | 0.1139 |
0.3643 | 52.8926 | 6400 | 0.4454 | 0.3854 | 0.1146 |
0.3563 | 54.5455 | 6600 | 0.4385 | 0.3881 | 0.1143 |
0.3438 | 56.1983 | 6800 | 0.4524 | 0.3958 | 0.1174 |
0.3374 | 57.8512 | 7000 | 0.4328 | 0.3893 | 0.1161 |
0.3404 | 59.5041 | 7200 | 0.4532 | 0.3927 | 0.1149 |
0.3319 | 61.1570 | 7400 | 0.4425 | 0.3947 | 0.1173 |
0.3277 | 62.8099 | 7600 | 0.4270 | 0.3958 | 0.1148 |
0.3284 | 64.4628 | 7800 | 0.4608 | 0.3843 | 0.1131 |
0.3202 | 66.1157 | 8000 | 0.4453 | 0.3873 | 0.1126 |
0.3229 | 67.7686 | 8200 | 0.4657 | 0.3908 | 0.1162 |
0.3131 | 69.4215 | 8400 | 0.4316 | 0.3746 | 0.1127 |
0.3115 | 71.0744 | 8600 | 0.4376 | 0.3796 | 0.1123 |
0.3045 | 72.7273 | 8800 | 0.4581 | 0.3943 | 0.1170 |
0.2979 | 74.3802 | 9000 | 0.4444 | 0.3769 | 0.1126 |
0.2977 | 76.0331 | 9200 | 0.4447 | 0.3939 | 0.1162 |
0.2972 | 77.6860 | 9400 | 0.4415 | 0.3796 | 0.1134 |
0.2856 | 79.3388 | 9600 | 0.4607 | 0.3827 | 0.1134 |
0.2868 | 80.9917 | 9800 | 0.4467 | 0.3816 | 0.1116 |
0.2872 | 82.6446 | 10000 | 0.4480 | 0.3692 | 0.1102 |
0.2849 | 84.2975 | 10200 | 0.4510 | 0.3850 | 0.1131 |
0.2792 | 85.9504 | 10400 | 0.4585 | 0.3792 | 0.1109 |
0.2634 | 87.6033 | 10600 | 0.4712 | 0.3827 | 0.1129 |
0.2662 | 89.2562 | 10800 | 0.4711 | 0.375 | 0.1099 |
0.2642 | 90.9091 | 11000 | 0.4591 | 0.3900 | 0.1137 |
0.2553 | 92.5620 | 11200 | 0.4583 | 0.3657 | 0.1094 |
0.2431 | 94.2149 | 11400 | 0.4818 | 0.3808 | 0.1131 |
0.2593 | 95.8678 | 11600 | 0.4577 | 0.3719 | 0.1089 |
0.2577 | 97.5207 | 11800 | 0.4555 | 0.3827 | 0.1108 |
0.2515 | 99.1736 | 12000 | 0.4579 | 0.3735 | 0.1099 |
0.2566 | 100.8264 | 12200 | 0.4683 | 0.3704 | 0.1093 |
0.2492 | 102.4793 | 12400 | 0.4587 | 0.3711 | 0.1082 |
0.2388 | 104.1322 | 12600 | 0.4686 | 0.3634 | 0.1085 |
0.2449 | 105.7851 | 12800 | 0.4637 | 0.3673 | 0.1083 |
0.2444 | 107.4380 | 13000 | 0.4676 | 0.3654 | 0.1088 |
0.2423 | 109.0909 | 13200 | 0.4711 | 0.3711 | 0.1089 |
0.2236 | 110.7438 | 13400 | 0.4650 | 0.3619 | 0.1086 |
0.2367 | 112.3967 | 13600 | 0.4638 | 0.3677 | 0.1083 |
0.2237 | 114.0496 | 13800 | 0.4805 | 0.3681 | 0.1074 |
0.2307 | 115.7025 | 14000 | 0.4724 | 0.3669 | 0.1085 |
0.221 | 117.3554 | 14200 | 0.4734 | 0.3669 | 0.1085 |
0.2166 | 119.0083 | 14400 | 0.4852 | 0.3758 | 0.1117 |
0.2137 | 120.6612 | 14600 | 0.4801 | 0.3681 | 0.1102 |
0.2076 | 122.3140 | 14800 | 0.4822 | 0.3596 | 0.1091 |
0.2087 | 123.9669 | 15000 | 0.4835 | 0.3677 | 0.1093 |
0.2076 | 125.6198 | 15200 | 0.4771 | 0.3684 | 0.1098 |
0.1987 | 127.2727 | 15400 | 0.4868 | 0.3681 | 0.1079 |
0.2051 | 128.9256 | 15600 | 0.4771 | 0.3688 | 0.1094 |
0.2024 | 130.5785 | 15800 | 0.4885 | 0.3634 | 0.1090 |
0.1957 | 132.2314 | 16000 | 0.4980 | 0.3642 | 0.1088 |
0.2073 | 133.8843 | 16200 | 0.5003 | 0.3654 | 0.1112 |
0.1859 | 135.5372 | 16400 | 0.4980 | 0.3596 | 0.1083 |
0.1835 | 137.1901 | 16600 | 0.4923 | 0.3661 | 0.1088 |
0.1928 | 138.8430 | 16800 | 0.4814 | 0.3592 | 0.1067 |
0.1814 | 140.4959 | 17000 | 0.4935 | 0.3696 | 0.1098 |
0.1901 | 142.1488 | 17200 | 0.5006 | 0.3657 | 0.1076 |
0.1857 | 143.8017 | 17400 | 0.4996 | 0.3627 | 0.1097 |
0.1805 | 145.4545 | 17600 | 0.4981 | 0.3688 | 0.1080 |
0.1752 | 147.1074 | 17800 | 0.4923 | 0.3553 | 0.1063 |
0.1794 | 148.7603 | 18000 | 0.4871 | 0.3549 | 0.1046 |
0.1777 | 150.4132 | 18200 | 0.4999 | 0.3557 | 0.1077 |
0.1786 | 152.0661 | 18400 | 0.4887 | 0.3615 | 0.1078 |
0.1718 | 153.7190 | 18600 | 0.4924 | 0.3611 | 0.1065 |
0.1694 | 155.3719 | 18800 | 0.4956 | 0.3665 | 0.1074 |
0.1766 | 157.0248 | 19000 | 0.5133 | 0.3623 | 0.1069 |
0.1694 | 158.6777 | 19200 | 0.5171 | 0.3661 | 0.1077 |
0.1658 | 160.3306 | 19400 | 0.5001 | 0.3573 | 0.1075 |
0.1616 | 161.9835 | 19600 | 0.5067 | 0.3665 | 0.1084 |
0.1646 | 163.6364 | 19800 | 0.5044 | 0.3650 | 0.1080 |
0.1587 | 165.2893 | 20000 | 0.5077 | 0.3580 | 0.1060 |
0.1666 | 166.9421 | 20200 | 0.5005 | 0.3580 | 0.1053 |
0.1669 | 168.5950 | 20400 | 0.5033 | 0.3596 | 0.1067 |
0.153 | 170.2479 | 20600 | 0.5211 | 0.3634 | 0.1070 |
0.1495 | 171.9008 | 20800 | 0.5117 | 0.3580 | 0.1056 |
0.1537 | 173.5537 | 21000 | 0.5139 | 0.3615 | 0.1048 |
0.152 | 175.2066 | 21200 | 0.5254 | 0.3692 | 0.1086 |
0.1533 | 176.8595 | 21400 | 0.5257 | 0.3665 | 0.1083 |
0.1473 | 178.5124 | 21600 | 0.5215 | 0.3627 | 0.1063 |
0.15 | 180.1653 | 21800 | 0.5261 | 0.3738 | 0.1089 |
0.1521 | 181.8182 | 22000 | 0.5267 | 0.3646 | 0.1069 |
0.1491 | 183.4711 | 22200 | 0.5251 | 0.3654 | 0.1068 |
0.1462 | 185.1240 | 22400 | 0.5202 | 0.3623 | 0.1066 |
0.1527 | 186.7769 | 22600 | 0.5166 | 0.3580 | 0.1048 |
0.151 | 188.4298 | 22800 | 0.5199 | 0.3619 | 0.1058 |
0.1447 | 190.0826 | 23000 | 0.5265 | 0.3588 | 0.1053 |
0.1567 | 191.7355 | 23200 | 0.5228 | 0.3630 | 0.1062 |
0.1446 | 193.3884 | 23400 | 0.5256 | 0.3615 | 0.1059 |
0.1494 | 195.0413 | 23600 | 0.5229 | 0.3611 | 0.1059 |
0.1496 | 196.6942 | 23800 | 0.5221 | 0.3619 | 0.1066 |
0.1431 | 198.3471 | 24000 | 0.5249 | 0.3619 | 0.1062 |
0.1441 | 200.0 | 24200 | 0.5244 | 0.3611 | 0.1060 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.4.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for Lguyogiro/wav2vec2-large-mms-1b-nhi-adapterft-ilv
Base model
facebook/mms-1b-all