Lguyogiro commited on
Commit
083dde2
·
verified ·
1 Parent(s): c18b2aa

wav2vec2-large-mms-1b-nhi-adapterft-ilv

Browse files
Files changed (2) hide show
  1. README.md +195 -196
  2. adapter.nhi.safetensors +3 -0
README.md CHANGED
@@ -1,199 +1,198 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: facebook/mms-1b-all
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - audiofolder
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: wav2vec2-large-mms-1b-nhi-adapterft-ilv
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: audiofolder
18
+ type: audiofolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.3611111111111111
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wav2vec2-large-mms-1b-nhi-adapterft-ilv
32
+
33
+ This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5244
36
+ - Wer: 0.3611
37
+ - Cer: 0.1060
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.001
57
+ - train_batch_size: 20
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 100
63
+ - num_epochs: 200
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
69
+ |:-------------:|:--------:|:-----:|:---------------:|:------:|:------:|
70
+ | 1.0326 | 1.6529 | 200 | 0.6958 | 0.6481 | 0.1936 |
71
+ | 0.8213 | 3.3058 | 400 | 0.6097 | 0.5563 | 0.1615 |
72
+ | 0.7669 | 4.9587 | 600 | 0.5498 | 0.5405 | 0.1580 |
73
+ | 0.7058 | 6.6116 | 800 | 0.5066 | 0.5015 | 0.1430 |
74
+ | 0.6592 | 8.2645 | 1000 | 0.5060 | 0.4907 | 0.1388 |
75
+ | 0.6518 | 9.9174 | 1200 | 0.4823 | 0.4772 | 0.1357 |
76
+ | 0.6181 | 11.5702 | 1400 | 0.4753 | 0.4691 | 0.1331 |
77
+ | 0.5987 | 13.2231 | 1600 | 0.4944 | 0.4761 | 0.1369 |
78
+ | 0.5762 | 14.8760 | 1800 | 0.4588 | 0.4510 | 0.1259 |
79
+ | 0.5702 | 16.5289 | 2000 | 0.4705 | 0.4533 | 0.1272 |
80
+ | 0.5308 | 18.1818 | 2200 | 0.4797 | 0.4549 | 0.1287 |
81
+ | 0.5317 | 19.8347 | 2400 | 0.4807 | 0.4680 | 0.1310 |
82
+ | 0.5179 | 21.4876 | 2600 | 0.4509 | 0.4286 | 0.1235 |
83
+ | 0.5116 | 23.1405 | 2800 | 0.4451 | 0.4363 | 0.1242 |
84
+ | 0.4869 | 24.7934 | 3000 | 0.4246 | 0.4267 | 0.1192 |
85
+ | 0.47 | 26.4463 | 3200 | 0.4474 | 0.4340 | 0.1249 |
86
+ | 0.4663 | 28.0992 | 3400 | 0.4379 | 0.4120 | 0.1191 |
87
+ | 0.4557 | 29.7521 | 3600 | 0.4476 | 0.4236 | 0.1212 |
88
+ | 0.4564 | 31.4050 | 3800 | 0.4248 | 0.4062 | 0.1171 |
89
+ | 0.4454 | 33.0579 | 4000 | 0.4370 | 0.4120 | 0.1189 |
90
+ | 0.4435 | 34.7107 | 4200 | 0.4282 | 0.4090 | 0.1182 |
91
+ | 0.439 | 36.3636 | 4400 | 0.4233 | 0.4008 | 0.1158 |
92
+ | 0.4299 | 38.0165 | 4600 | 0.4301 | 0.4101 | 0.1177 |
93
+ | 0.4125 | 39.6694 | 4800 | 0.4426 | 0.4074 | 0.1190 |
94
+ | 0.401 | 41.3223 | 5000 | 0.4378 | 0.4140 | 0.1186 |
95
+ | 0.4034 | 42.9752 | 5200 | 0.4308 | 0.3993 | 0.1161 |
96
+ | 0.4052 | 44.6281 | 5400 | 0.4399 | 0.4001 | 0.1160 |
97
+ | 0.3889 | 46.2810 | 5600 | 0.4443 | 0.4047 | 0.1169 |
98
+ | 0.3976 | 47.9339 | 5800 | 0.4345 | 0.3835 | 0.1171 |
99
+ | 0.3737 | 49.5868 | 6000 | 0.4505 | 0.3916 | 0.1133 |
100
+ | 0.3845 | 51.2397 | 6200 | 0.4342 | 0.3966 | 0.1139 |
101
+ | 0.3643 | 52.8926 | 6400 | 0.4454 | 0.3854 | 0.1146 |
102
+ | 0.3563 | 54.5455 | 6600 | 0.4385 | 0.3881 | 0.1143 |
103
+ | 0.3438 | 56.1983 | 6800 | 0.4524 | 0.3958 | 0.1174 |
104
+ | 0.3374 | 57.8512 | 7000 | 0.4328 | 0.3893 | 0.1161 |
105
+ | 0.3404 | 59.5041 | 7200 | 0.4532 | 0.3927 | 0.1149 |
106
+ | 0.3319 | 61.1570 | 7400 | 0.4425 | 0.3947 | 0.1173 |
107
+ | 0.3277 | 62.8099 | 7600 | 0.4270 | 0.3958 | 0.1148 |
108
+ | 0.3284 | 64.4628 | 7800 | 0.4608 | 0.3843 | 0.1131 |
109
+ | 0.3202 | 66.1157 | 8000 | 0.4453 | 0.3873 | 0.1126 |
110
+ | 0.3229 | 67.7686 | 8200 | 0.4657 | 0.3908 | 0.1162 |
111
+ | 0.3131 | 69.4215 | 8400 | 0.4316 | 0.3746 | 0.1127 |
112
+ | 0.3115 | 71.0744 | 8600 | 0.4376 | 0.3796 | 0.1123 |
113
+ | 0.3045 | 72.7273 | 8800 | 0.4581 | 0.3943 | 0.1170 |
114
+ | 0.2979 | 74.3802 | 9000 | 0.4444 | 0.3769 | 0.1126 |
115
+ | 0.2977 | 76.0331 | 9200 | 0.4447 | 0.3939 | 0.1162 |
116
+ | 0.2972 | 77.6860 | 9400 | 0.4415 | 0.3796 | 0.1134 |
117
+ | 0.2856 | 79.3388 | 9600 | 0.4607 | 0.3827 | 0.1134 |
118
+ | 0.2868 | 80.9917 | 9800 | 0.4467 | 0.3816 | 0.1116 |
119
+ | 0.2872 | 82.6446 | 10000 | 0.4480 | 0.3692 | 0.1102 |
120
+ | 0.2849 | 84.2975 | 10200 | 0.4510 | 0.3850 | 0.1131 |
121
+ | 0.2792 | 85.9504 | 10400 | 0.4585 | 0.3792 | 0.1109 |
122
+ | 0.2634 | 87.6033 | 10600 | 0.4712 | 0.3827 | 0.1129 |
123
+ | 0.2662 | 89.2562 | 10800 | 0.4711 | 0.375 | 0.1099 |
124
+ | 0.2642 | 90.9091 | 11000 | 0.4591 | 0.3900 | 0.1137 |
125
+ | 0.2553 | 92.5620 | 11200 | 0.4583 | 0.3657 | 0.1094 |
126
+ | 0.2431 | 94.2149 | 11400 | 0.4818 | 0.3808 | 0.1131 |
127
+ | 0.2593 | 95.8678 | 11600 | 0.4577 | 0.3719 | 0.1089 |
128
+ | 0.2577 | 97.5207 | 11800 | 0.4555 | 0.3827 | 0.1108 |
129
+ | 0.2515 | 99.1736 | 12000 | 0.4579 | 0.3735 | 0.1099 |
130
+ | 0.2566 | 100.8264 | 12200 | 0.4683 | 0.3704 | 0.1093 |
131
+ | 0.2492 | 102.4793 | 12400 | 0.4587 | 0.3711 | 0.1082 |
132
+ | 0.2388 | 104.1322 | 12600 | 0.4686 | 0.3634 | 0.1085 |
133
+ | 0.2449 | 105.7851 | 12800 | 0.4637 | 0.3673 | 0.1083 |
134
+ | 0.2444 | 107.4380 | 13000 | 0.4676 | 0.3654 | 0.1088 |
135
+ | 0.2423 | 109.0909 | 13200 | 0.4711 | 0.3711 | 0.1089 |
136
+ | 0.2236 | 110.7438 | 13400 | 0.4650 | 0.3619 | 0.1086 |
137
+ | 0.2367 | 112.3967 | 13600 | 0.4638 | 0.3677 | 0.1083 |
138
+ | 0.2237 | 114.0496 | 13800 | 0.4805 | 0.3681 | 0.1074 |
139
+ | 0.2307 | 115.7025 | 14000 | 0.4724 | 0.3669 | 0.1085 |
140
+ | 0.221 | 117.3554 | 14200 | 0.4734 | 0.3669 | 0.1085 |
141
+ | 0.2166 | 119.0083 | 14400 | 0.4852 | 0.3758 | 0.1117 |
142
+ | 0.2137 | 120.6612 | 14600 | 0.4801 | 0.3681 | 0.1102 |
143
+ | 0.2076 | 122.3140 | 14800 | 0.4822 | 0.3596 | 0.1091 |
144
+ | 0.2087 | 123.9669 | 15000 | 0.4835 | 0.3677 | 0.1093 |
145
+ | 0.2076 | 125.6198 | 15200 | 0.4771 | 0.3684 | 0.1098 |
146
+ | 0.1987 | 127.2727 | 15400 | 0.4868 | 0.3681 | 0.1079 |
147
+ | 0.2051 | 128.9256 | 15600 | 0.4771 | 0.3688 | 0.1094 |
148
+ | 0.2024 | 130.5785 | 15800 | 0.4885 | 0.3634 | 0.1090 |
149
+ | 0.1957 | 132.2314 | 16000 | 0.4980 | 0.3642 | 0.1088 |
150
+ | 0.2073 | 133.8843 | 16200 | 0.5003 | 0.3654 | 0.1112 |
151
+ | 0.1859 | 135.5372 | 16400 | 0.4980 | 0.3596 | 0.1083 |
152
+ | 0.1835 | 137.1901 | 16600 | 0.4923 | 0.3661 | 0.1088 |
153
+ | 0.1928 | 138.8430 | 16800 | 0.4814 | 0.3592 | 0.1067 |
154
+ | 0.1814 | 140.4959 | 17000 | 0.4935 | 0.3696 | 0.1098 |
155
+ | 0.1901 | 142.1488 | 17200 | 0.5006 | 0.3657 | 0.1076 |
156
+ | 0.1857 | 143.8017 | 17400 | 0.4996 | 0.3627 | 0.1097 |
157
+ | 0.1805 | 145.4545 | 17600 | 0.4981 | 0.3688 | 0.1080 |
158
+ | 0.1752 | 147.1074 | 17800 | 0.4923 | 0.3553 | 0.1063 |
159
+ | 0.1794 | 148.7603 | 18000 | 0.4871 | 0.3549 | 0.1046 |
160
+ | 0.1777 | 150.4132 | 18200 | 0.4999 | 0.3557 | 0.1077 |
161
+ | 0.1786 | 152.0661 | 18400 | 0.4887 | 0.3615 | 0.1078 |
162
+ | 0.1718 | 153.7190 | 18600 | 0.4924 | 0.3611 | 0.1065 |
163
+ | 0.1694 | 155.3719 | 18800 | 0.4956 | 0.3665 | 0.1074 |
164
+ | 0.1766 | 157.0248 | 19000 | 0.5133 | 0.3623 | 0.1069 |
165
+ | 0.1694 | 158.6777 | 19200 | 0.5171 | 0.3661 | 0.1077 |
166
+ | 0.1658 | 160.3306 | 19400 | 0.5001 | 0.3573 | 0.1075 |
167
+ | 0.1616 | 161.9835 | 19600 | 0.5067 | 0.3665 | 0.1084 |
168
+ | 0.1646 | 163.6364 | 19800 | 0.5044 | 0.3650 | 0.1080 |
169
+ | 0.1587 | 165.2893 | 20000 | 0.5077 | 0.3580 | 0.1060 |
170
+ | 0.1666 | 166.9421 | 20200 | 0.5005 | 0.3580 | 0.1053 |
171
+ | 0.1669 | 168.5950 | 20400 | 0.5033 | 0.3596 | 0.1067 |
172
+ | 0.153 | 170.2479 | 20600 | 0.5211 | 0.3634 | 0.1070 |
173
+ | 0.1495 | 171.9008 | 20800 | 0.5117 | 0.3580 | 0.1056 |
174
+ | 0.1537 | 173.5537 | 21000 | 0.5139 | 0.3615 | 0.1048 |
175
+ | 0.152 | 175.2066 | 21200 | 0.5254 | 0.3692 | 0.1086 |
176
+ | 0.1533 | 176.8595 | 21400 | 0.5257 | 0.3665 | 0.1083 |
177
+ | 0.1473 | 178.5124 | 21600 | 0.5215 | 0.3627 | 0.1063 |
178
+ | 0.15 | 180.1653 | 21800 | 0.5261 | 0.3738 | 0.1089 |
179
+ | 0.1521 | 181.8182 | 22000 | 0.5267 | 0.3646 | 0.1069 |
180
+ | 0.1491 | 183.4711 | 22200 | 0.5251 | 0.3654 | 0.1068 |
181
+ | 0.1462 | 185.1240 | 22400 | 0.5202 | 0.3623 | 0.1066 |
182
+ | 0.1527 | 186.7769 | 22600 | 0.5166 | 0.3580 | 0.1048 |
183
+ | 0.151 | 188.4298 | 22800 | 0.5199 | 0.3619 | 0.1058 |
184
+ | 0.1447 | 190.0826 | 23000 | 0.5265 | 0.3588 | 0.1053 |
185
+ | 0.1567 | 191.7355 | 23200 | 0.5228 | 0.3630 | 0.1062 |
186
+ | 0.1446 | 193.3884 | 23400 | 0.5256 | 0.3615 | 0.1059 |
187
+ | 0.1494 | 195.0413 | 23600 | 0.5229 | 0.3611 | 0.1059 |
188
+ | 0.1496 | 196.6942 | 23800 | 0.5221 | 0.3619 | 0.1066 |
189
+ | 0.1431 | 198.3471 | 24000 | 0.5249 | 0.3619 | 0.1062 |
190
+ | 0.1441 | 200.0 | 24200 | 0.5244 | 0.3611 | 0.1060 |
191
+
192
+
193
+ ### Framework versions
194
+
195
+ - Transformers 4.41.2
196
+ - Pytorch 2.4.0
197
+ - Datasets 2.19.1
198
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adapter.nhi.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0babb056c414159d073202956fc54e19c9c12b64cae9716bdd2cb357b6f732e
3
+ size 8834400