V0415B1
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0588
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 60
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.7238 | 0.09 | 10 | 2.4835 |
2.0622 | 0.18 | 20 | 1.3199 |
0.7393 | 0.27 | 30 | 0.1436 |
0.1385 | 0.36 | 40 | 0.0987 |
0.1079 | 0.45 | 50 | 0.0873 |
0.0941 | 0.54 | 60 | 0.0785 |
0.0829 | 0.63 | 70 | 0.0737 |
0.0772 | 0.73 | 80 | 0.0689 |
0.0742 | 0.82 | 90 | 0.0664 |
0.0774 | 0.91 | 100 | 0.0658 |
0.0758 | 1.0 | 110 | 0.0652 |
0.0728 | 1.09 | 120 | 0.0640 |
0.0709 | 1.18 | 130 | 0.0633 |
0.068 | 1.27 | 140 | 0.0628 |
0.0669 | 1.36 | 150 | 0.0609 |
0.0684 | 1.45 | 160 | 0.0605 |
0.0675 | 1.54 | 170 | 0.0602 |
0.0668 | 1.63 | 180 | 0.0590 |
0.0635 | 1.72 | 190 | 0.0615 |
0.0671 | 1.81 | 200 | 0.0584 |
0.0578 | 1.9 | 210 | 0.0588 |
0.0585 | 1.99 | 220 | 0.0601 |
0.0538 | 2.08 | 230 | 0.0589 |
0.0586 | 2.18 | 240 | 0.0591 |
0.0552 | 2.27 | 250 | 0.0583 |
0.0563 | 2.36 | 260 | 0.0586 |
0.0545 | 2.45 | 270 | 0.0586 |
0.0514 | 2.54 | 280 | 0.0590 |
0.0525 | 2.63 | 290 | 0.0592 |
0.0549 | 2.72 | 300 | 0.0592 |
0.0605 | 2.81 | 310 | 0.0588 |
0.0515 | 2.9 | 320 | 0.0588 |
0.0564 | 2.99 | 330 | 0.0588 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0415B1
Base model
microsoft/phi-2