V0424HMA2
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9738 | 0.09 | 10 | 0.6274 |
0.2393 | 0.18 | 20 | 0.1219 |
0.1178 | 0.27 | 30 | 0.0941 |
0.0994 | 0.36 | 40 | 0.0758 |
0.0776 | 0.45 | 50 | 0.0772 |
0.0858 | 0.54 | 60 | 0.0728 |
0.0808 | 0.63 | 70 | 0.0750 |
0.0838 | 0.73 | 80 | 0.0829 |
0.0885 | 0.82 | 90 | 0.0693 |
0.0925 | 0.91 | 100 | 0.0701 |
0.0917 | 1.0 | 110 | 0.0651 |
0.0645 | 1.09 | 120 | 0.0766 |
0.0767 | 1.18 | 130 | 0.0721 |
0.0695 | 1.27 | 140 | 0.0660 |
0.0653 | 1.36 | 150 | 0.0686 |
0.0633 | 1.45 | 160 | 0.0672 |
0.0614 | 1.54 | 170 | 0.0607 |
0.0643 | 1.63 | 180 | 0.0608 |
0.0579 | 1.72 | 190 | 0.0618 |
0.0658 | 1.81 | 200 | 0.0599 |
0.0503 | 1.9 | 210 | 0.0628 |
0.0514 | 1.99 | 220 | 0.0590 |
0.0358 | 2.08 | 230 | 0.0615 |
0.0306 | 2.18 | 240 | 0.0660 |
0.0262 | 2.27 | 250 | 0.0593 |
0.0249 | 2.36 | 260 | 0.0555 |
0.025 | 2.45 | 270 | 0.0535 |
0.0233 | 2.54 | 280 | 0.0512 |
0.0196 | 2.63 | 290 | 0.0508 |
0.0204 | 2.72 | 300 | 0.0503 |
0.0226 | 2.81 | 310 | 0.0499 |
0.0199 | 2.9 | 320 | 0.0499 |
0.0189 | 2.99 | 330 | 0.0500 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for Litzy619/V0424HMA2
Base model
microsoft/phi-2