V0424HMA22
This model is a fine-tuned version of microsoft/phi-2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0666
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5725 | 0.09 | 10 | 0.1530 |
0.1525 | 0.18 | 20 | 0.1096 |
0.1086 | 0.27 | 30 | 0.0853 |
0.0937 | 0.36 | 40 | 0.0773 |
0.0776 | 0.45 | 50 | 0.0717 |
0.0875 | 0.54 | 60 | 0.0764 |
0.0787 | 0.63 | 70 | 0.0743 |
0.0768 | 0.73 | 80 | 0.0836 |
0.084 | 0.82 | 90 | 0.0708 |
0.0829 | 0.91 | 100 | 0.0625 |
0.0798 | 1.0 | 110 | 0.0675 |
0.0637 | 1.09 | 120 | 0.0937 |
0.0725 | 1.18 | 130 | 0.0804 |
0.0669 | 1.27 | 140 | 0.0738 |
0.071 | 1.36 | 150 | 0.0711 |
0.0779 | 1.45 | 160 | 0.0639 |
0.0621 | 1.54 | 170 | 0.0645 |
0.0637 | 1.63 | 180 | 0.0625 |
0.0579 | 1.72 | 190 | 0.0622 |
0.0646 | 1.81 | 200 | 0.0668 |
0.0574 | 1.9 | 210 | 0.0660 |
0.0534 | 1.99 | 220 | 0.0596 |
0.0347 | 2.08 | 230 | 0.0707 |
0.037 | 2.18 | 240 | 0.0740 |
0.0342 | 2.27 | 250 | 0.0672 |
0.0321 | 2.36 | 260 | 0.0686 |
0.0327 | 2.45 | 270 | 0.0707 |
0.0302 | 2.54 | 280 | 0.0698 |
0.0281 | 2.63 | 290 | 0.0690 |
0.0287 | 2.72 | 300 | 0.0686 |
0.035 | 2.81 | 310 | 0.0674 |
0.0312 | 2.9 | 320 | 0.0666 |
0.0338 | 2.99 | 330 | 0.0666 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0424HMA22
Base model
microsoft/phi-2