File size: 1,007 Bytes
54dca2f
89ea434
 
fad8564
 
89ea434
 
 
 
fd1ee62
 
54dca2f
 
89ea434
fd1ee62
0652dbe
 
 
54dca2f
81e5f6f
bc1fd81
 
fd1ee62
54dca2f
fd1ee62
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
language:
- ja
library_name: transformers
license: apache-2.0
metrics:
- accuracy
- f1
pipeline_tag: text-classification
datasets:
- LoneWolfgang/japanese-twitter-sentiment
---

# BERT for Sentiment Analysis of Japanese Twitter

This model was finetuned from [BERT for Japanese Twitter](https://huggingface.co/LoneWolfgang/bert-for-japanese-twitter), which was adapted from Japanese BERT by Tohoku NLP by continuing MLM on a Twitter corpus.

It used [Japanese Twitter Sentiment 1k (JTS1k)](https://huggingface.co/datasets/LoneWolfgang/japanese-twitter-sentiment) for finetuning, omitting the mixed examples.

## Labels
0 -> Negative; 
1 -> Neutral; 
2 -> Positive

## Example Pipeline
```python
from transformers import pipeline
sentiment = pipeline("sentiment-analysis", model="LoneWolfgang/bert-for-japanese-twitter-sentiment")
sentiment ("こちらのカフェ、サービスが残念でした。二度と行かないかな…😞 #がっかり")
```
```
[{'label': 'negative', 'score': 0.8242}]
```