Michal Zebrowski

M1cler

AI & ML interests

None yet

Recent Activity

liked a Space about 1 month ago
patriotyk/Apollo
liked a Space 2 months ago
fffiloni/DimensionX
liked a Space 2 months ago
InstantX/flux-IP-adapter
View all activity

Organizations

None yet

M1cler's activity

liked a Space about 1 month ago
replied to clem's post 3 months ago
reacted to clem's post with โค๏ธ 3 months ago
view post
Post
4455
This is no Woodstock AI but will be fun nonetheless haha. Iโ€™ll be hosting a live workshop with team members next week about the Enterprise Hugging Face hub.

1,000 spots available first-come first serve with some surprises during the stream!

You can register and add to your calendar here: https://streamyard.com/watch/JS2jHsUP3NDM
ยท
reacted to m-ric's post with โค๏ธ 5 months ago
view post
Post
919
๐—”๐—œ๐Ÿฎ๐Ÿญ ๐—ถ๐˜๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ป๐—ฒ๐˜„ ๐—๐—ฎ๐—บ๐—ฏ๐—ฎ ๐Ÿญ.๐Ÿฑ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ: ๐—ก๐—ฒ๐˜„ ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ฎ๐—ฟ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—น๐—ผ๐—ป๐—ด-๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐˜‚๐˜€๐—ฒ-๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€!๐Ÿ…

@ai21labs used a different architecture to beat the status-quo Transformers models: Jamba architecture combines classic Transformers layers with the new Mamba layers, for which the complexity is a linear (instead of quadratic) function of the context length.

What does this imply?

โžก๏ธ Jamba models are much more efficient for long contexts: faster (up to 2.5x faster for long context), takes less memory, and also performs better to recall everything in the prompt.

That means itโ€™s a new go-to model for RAG or agentic applications!

And the performance is not too shabby: Jamba 1.5 models are comparable in perf to similar-sized Llama-3.1 models! The largest model even outperforms Llama-3.1 405B on Arena-Hard.

โœŒ๏ธ Comes in 2 sizes: Mini (12B active/52B) and Large (94B active/399B)
๐Ÿ“ Both deliver 256k context length, for low memory: Jamba-1.5 mini fits 140k context length on one single A100.
โš™๏ธ New quanttization method: Experts Int8 quantizes only the weights parts of the MoE layers, which account for 85% of weights
๐Ÿค– Natively supports JSON format generation & function calling.
๐Ÿ”“ Permissive license *if your org makes <$50M revenue*

Available on the Hub ๐Ÿ‘‰ ai21labs/jamba-15-66c44befa474a917fcf55251
Read their release blog post ๐Ÿ‘‰ https://www.ai21.com/blog/announcing-jamba-model-family
  • 2 replies
ยท
liked a Space 8 months ago