File size: 3,079 Bytes
7fe7a62 0175655 90ab329 7fe7a62 ccef24d 7fe7a62 ccef24d 7fe7a62 6b1db0a 3c9e78a 7fe7a62 0175655 7fe7a62 ccef24d 0175655 7fe7a62 0175655 7fe7a62 0175655 7fe7a62 0175655 ccef24d 0175655 7fe7a62 0175655 7fe7a62 0175655 7fe7a62 0175655 7fe7a62 0175655 ccef24d 0175655 7fe7a62 0175655 7fe7a62 0175655 7fe7a62 0175655 ccef24d 0175655 7fe7a62 0175655 7fe7a62 0175655 ccef24d 0175655 ccef24d 0175655 7fe7a62 0175655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- Tensoic/Alpaca-Gujarati
- Tensoic/airoboros-3.2_kn
- ravithejads/samvaad-hi-filtered
- HydraIndicLM/hindi_alpaca_dolly_67k
- OdiaGenAI/Odia_Alpaca_instructions_52k
- OdiaGenAI/gpt-teacher-roleplay-odia-3k
- HydraIndicLM/punjabi_alpaca_52K
- HydraIndicLM/bengali_alpaca_dolly_67k
- abhinand/tamil-alpaca
- Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized
---
# MISHANM/Multilingual_Llama-3-8B-Instruct
This model is fine-tuned for Multi languages , capable of answering queries and translating text from English to Multiple languages . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
## Model Details
This model is based on meta-llama/Llama-3.2-3B-Instruct and has been LoRA finetuned on Multi language datasets:
1. Gujarati
2. Kannada
3. Hindi
4. Odia
5. Punjabi
6. Bengali
7. Tamil
8. Telugu
# Training Details
The model is trained on approx 321K instruction samples.
1. GPUs: 2*AMD Instinct™ MI210 Accelerators
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Multilingual_Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_path)
# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs")
model = torch.nn.DataParallel(model)
# Move the model to the appropriate device
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a language expert and linguist, with same knowledge give response in ().", #In place of "()" write your desired language in which response is required. ",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
output = model.module.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Write a story about LLM ."""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Multilingual_Llama-3-8B-Instruct,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Indic Languages},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```
- PEFT 0.12.0 |