metadata
license: mit
base_model: microsoft/deberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-finetuned-ner-microsoft-disaster
results: []
deberta-finetuned-ner-microsoft-disaster
This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1013
- Precision: 0.9216
- Recall: 0.9314
- F1: 0.9265
- Accuracy: 0.9805
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0872 | 1.0 | 1799 | 0.0762 | 0.9101 | 0.9245 | 0.9172 | 0.9796 |
0.0658 | 2.0 | 3598 | 0.0741 | 0.9244 | 0.9288 | 0.9266 | 0.9811 |
0.0517 | 3.0 | 5397 | 0.0737 | 0.9282 | 0.9291 | 0.9287 | 0.9808 |
0.0383 | 4.0 | 7196 | 0.0834 | 0.9263 | 0.9275 | 0.9269 | 0.9807 |
0.0298 | 5.0 | 8995 | 0.0895 | 0.9220 | 0.9299 | 0.9259 | 0.9802 |
0.0237 | 6.0 | 10794 | 0.0963 | 0.9203 | 0.9322 | 0.9262 | 0.9806 |
0.0182 | 7.0 | 12593 | 0.1013 | 0.9216 | 0.9314 | 0.9265 | 0.9805 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1