|
--- |
|
license: mit |
|
base_model: microsoft/deberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-finetuned-ner-microsoft-disaster |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/akku/huggingface/runs/bxwrwawl) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/akku/huggingface/runs/bxwrwawl) |
|
# deberta-finetuned-ner-microsoft-disaster |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1013 |
|
- Precision: 0.9216 |
|
- Recall: 0.9314 |
|
- F1: 0.9265 |
|
- Accuracy: 0.9805 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0872 | 1.0 | 1799 | 0.0762 | 0.9101 | 0.9245 | 0.9172 | 0.9796 | |
|
| 0.0658 | 2.0 | 3598 | 0.0741 | 0.9244 | 0.9288 | 0.9266 | 0.9811 | |
|
| 0.0517 | 3.0 | 5397 | 0.0737 | 0.9282 | 0.9291 | 0.9287 | 0.9808 | |
|
| 0.0383 | 4.0 | 7196 | 0.0834 | 0.9263 | 0.9275 | 0.9269 | 0.9807 | |
|
| 0.0298 | 5.0 | 8995 | 0.0895 | 0.9220 | 0.9299 | 0.9259 | 0.9802 | |
|
| 0.0237 | 6.0 | 10794 | 0.0963 | 0.9203 | 0.9322 | 0.9262 | 0.9806 | |
|
| 0.0182 | 7.0 | 12593 | 0.1013 | 0.9216 | 0.9314 | 0.9265 | 0.9805 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|