|
--- |
|
license: mit |
|
base_model: ML-GOD/deberta-finetuned-ner-microsoft-disaster |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-finetuned-ner-microsoft-disaster |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/akku/huggingface/runs/qc6ajeko) |
|
# deberta-finetuned-ner-microsoft-disaster |
|
|
|
This model is a fine-tuned version of [ML-GOD/deberta-finetuned-ner-microsoft-disaster](https://huggingface.co/ML-GOD/deberta-finetuned-ner-microsoft-disaster) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1757 |
|
- Precision: 0.9219 |
|
- Recall: 0.9294 |
|
- F1: 0.9257 |
|
- Accuracy: 0.9797 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.024 | 1.0 | 1799 | 0.1107 | 0.9149 | 0.9263 | 0.9206 | 0.9790 | |
|
| 0.0201 | 2.0 | 3598 | 0.1197 | 0.9154 | 0.9225 | 0.9190 | 0.9782 | |
|
| 0.014 | 3.0 | 5397 | 0.1249 | 0.9190 | 0.9279 | 0.9235 | 0.9794 | |
|
| 0.0089 | 4.0 | 7196 | 0.1327 | 0.9151 | 0.9221 | 0.9186 | 0.9781 | |
|
| 0.0057 | 5.0 | 8995 | 0.1432 | 0.9117 | 0.9268 | 0.9192 | 0.9789 | |
|
| 0.0049 | 6.0 | 10794 | 0.1610 | 0.9164 | 0.9240 | 0.9202 | 0.9781 | |
|
| 0.0031 | 7.0 | 12593 | 0.1740 | 0.9197 | 0.9273 | 0.9235 | 0.9791 | |
|
| 0.0028 | 8.0 | 14392 | 0.1701 | 0.9222 | 0.9288 | 0.9255 | 0.9797 | |
|
| 0.0022 | 9.0 | 16191 | 0.1750 | 0.9247 | 0.9290 | 0.9268 | 0.9799 | |
|
| 0.0009 | 10.0 | 17990 | 0.1757 | 0.9219 | 0.9294 | 0.9257 | 0.9797 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|