ppo-LunarLander-v2 / config.json
MRingive's picture
First model from Deep RL Course
2f3efeb
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca15283670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca15283700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca15283790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca15283820>", "_build": "<function ActorCriticPolicy._build at 0x7fca152838b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fca15283940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca152839d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca15283a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca15283af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca15283b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca15283c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca15283ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fca152815d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673789527860304342, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZvEz4GC5c/fGGUPtEL5b7uSI4+QqrUPQAAAAAAAAAAMyeqO4Wxk7t+BMG6ZpN+PJSezjzdhVq9AACAPwAAgD+aLie95bi6PgmMij3CVKG+LdsAPAskhT0AAAAAAAAAAJOrZj7bXUY/IEL/vez9t744IBU+apkGvgAAAAAAAAAAc6m8PQ252j663+m+U07BviU/7L1qnTa9AAAAAAAAAAAAuZM8KfhduqoLRzqxmPi4rDfBOluWV7kAAIA/AACAPzNf1rz2NGW600fCsmRCXLA+nBW6Pw8QMwAAgD8AAIA/mgm8OjEUqT86vs47u0DyvuvqBD01qvw8AAAAAAAAAAAtezg+csZxPzZobz5APLe+XqSlPm+VCD0AAAAAAAAAAIDoHr1S00U+zzQIPsdeir5Q8jE9vECFPQAAAAAAAAAApvS9vbWxrz5lzuY9AUdhvm4W+btQPJE8AAAAAAAAAAAzdZg9j14SuuJ9cTInxvKwzSjhuhub0bIAAIA/AACAP9pYnT2fSoU+j4g/vjl4m77JbE+9ogFmvQAAAAAAAAAADQOTvRo2qj5mwmw+15aQvlrCsD2rALw9AAAAAAAAAABm1qK7yTEZPsjKUb05Gpa+dhAfvJEXML0AAAAAAAAAAM0kZrxDbRi8WdgvvJ45lzyKAIK9Srd6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg/jAjv8vc0CUhpRSlIwBbJRL9IwBdJRHQK3BVVhkRSR1fZQoaAZoCWgPQwjayHVTivlwQJSGlFKUaBVNAAFoFkdArcFbV6NVBHV9lChoBmgJaA9DCACuZMdGDDFAlIaUUpRoFUvLaBZHQK3ByfzSThZ1fZQoaAZoCWgPQwgz+Wab23RxQJSGlFKUaBVL8mgWR0Ctwdbx/d6+dX2UKGgGaAloD0MIABqlSz/ZcUCUhpRSlGgVS/hoFkdArcIJSzgMt3V9lChoBmgJaA9DCIc2ABsQbnJAlIaUUpRoFUv2aBZHQK3CEPo3aSN1fZQoaAZoCWgPQwiyKsJNRupyQJSGlFKUaBVL7mgWR0Ctwi+hPCVKdX2UKGgGaAloD0MIzhYQWo/acUCUhpRSlGgVTSwBaBZHQK3CSHmA9V51fZQoaAZoCWgPQwiymxn9aO5zQJSGlFKUaBVNNQFoFkdArcKYI2OyV3V9lChoBmgJaA9DCATo9/3b5HBAlIaUUpRoFUvdaBZHQK3CufjjrAx1fZQoaAZoCWgPQwiQ9GkV/a5zQJSGlFKUaBVL9mgWR0CtwsnKW9lFdX2UKGgGaAloD0MI3KD2WzvqbkCUhpRSlGgVS/xoFkdArcMz3VTaTXV9lChoBmgJaA9DCPIIbqQs9nJAlIaUUpRoFU0AAWgWR0Ctw13j2i+MdX2UKGgGaAloD0MI/RTHgRcEckCUhpRSlGgVS+BoFkdArcNoUtZmqnV9lChoBmgJaA9DCApMp3VbsHJAlIaUUpRoFU0VAWgWR0Ctw41K5CnhdX2UKGgGaAloD0MIxHdi1oupUUCUhpRSlGgVS9hoFkdArcPEJQcghnV9lChoBmgJaA9DCB2qKcm6unNAlIaUUpRoFUv/aBZHQK3EKgjhUBJ1fZQoaAZoCWgPQwh5P26/PORyQJSGlFKUaBVNFgFoFkdArcSPko4MnnV9lChoBmgJaA9DCNwODYtRbXJAlIaUUpRoFUvvaBZHQK3EyyfL9uR1fZQoaAZoCWgPQwiUT49tGZZxQJSGlFKUaBVL72gWR0CtxNMEaESNdX2UKGgGaAloD0MIRdrGn6hLcUCUhpRSlGgVTQABaBZHQK3E00dBBzF1fZQoaAZoCWgPQwhPsWoQ5qpyQJSGlFKUaBVNCgFoFkdArcTmI9C/oXV9lChoBmgJaA9DCBkfZi9bkG9AlIaUUpRoFUvzaBZHQK3E/ytFKCh1fZQoaAZoCWgPQwj/kenQae5sQJSGlFKUaBVL7GgWR0CtxQEpAlfJdX2UKGgGaAloD0MIwRvSqMC+UkCUhpRSlGgVS8loFkdArcUeXXyy2XV9lChoBmgJaA9DCA3BcRm3h21AlIaUUpRoFUv7aBZHQK3Fc0gKWs11fZQoaAZoCWgPQwhgd7rzxK5uQJSGlFKUaBVL+GgWR0CtxYwGwA2idX2UKGgGaAloD0MIJJ2BkZc5ckCUhpRSlGgVS+FoFkdArcXw/Vy3kXV9lChoBmgJaA9DCBL3WPqQD3JAlIaUUpRoFUvdaBZHQK3F8MdcSoR1fZQoaAZoCWgPQwh8f4P2aoVwQJSGlFKUaBVL92gWR0CtxgL92ovSdX2UKGgGaAloD0MIByP2CSDBcUCUhpRSlGgVS/hoFkdArcZdqtYCAHV9lChoBmgJaA9DCBY0LbEyEXBAlIaUUpRoFUvvaBZHQK3Ge7tAs051fZQoaAZoCWgPQwiwPbMkgKVxQJSGlFKUaBVL2mgWR0Ctxp0GeMAFdX2UKGgGaAloD0MIhgMhWcCUbUCUhpRSlGgVS+poFkdArcdkSAYpD3V9lChoBmgJaA9DCLOXbactcW9AlIaUUpRoFUvuaBZHQK3QliNKh+R1fZQoaAZoCWgPQwgYlj/fFh1xQJSGlFKUaBVL8mgWR0Ct0LgWBSUDdX2UKGgGaAloD0MIY+yEl6DQckCUhpRSlGgVS+BoFkdArdC/tF8XvnV9lChoBmgJaA9DCBSSzOqdMHJAlIaUUpRoFU0RAWgWR0Ct0MvrGBFvdX2UKGgGaAloD0MIBr6iW286cUCUhpRSlGgVTQUBaBZHQK3Q4Dxsl9l1fZQoaAZoCWgPQwjsia4Lf6ZxQJSGlFKUaBVL9mgWR0Ct0N9onKGMdX2UKGgGaAloD0MIWFTE6aR9c0CUhpRSlGgVS9hoFkdArdEAmiQDFXV9lChoBmgJaA9DCDSAt0ACKnFAlIaUUpRoFU02AWgWR0Ct0YgpjMFEdX2UKGgGaAloD0MI56ij46o9cECUhpRSlGgVS/ZoFkdArdHZ4bCJoHV9lChoBmgJaA9DCAsnaf6YgHFAlIaUUpRoFU0kAWgWR0Ct0ffUe+23dX2UKGgGaAloD0MI7Pma5bIhcECUhpRSlGgVTQkBaBZHQK3SFvaURnR1fZQoaAZoCWgPQwg6XRYTm9pvQJSGlFKUaBVNAwFoFkdArdIadhAnlXV9lChoBmgJaA9DCB1WuOVjqHFAlIaUUpRoFUvraBZHQK3SNj9XLeR1fZQoaAZoCWgPQwiAuoECb3FxQJSGlFKUaBVL1mgWR0Ct0jxFI/Z/dX2UKGgGaAloD0MIM2yU9duDcUCUhpRSlGgVTQ0BaBZHQK3Sq8tf5UN1fZQoaAZoCWgPQwi7KlCLgfJzQJSGlFKUaBVL82gWR0Ct013r2QGOdX2UKGgGaAloD0MIfsnGg+26cECUhpRSlGgVS/loFkdArdOYu27Wd3V9lChoBmgJaA9DCGgj103pdHJAlIaUUpRoFUvtaBZHQK3TnHSWqtJ1fZQoaAZoCWgPQwgmOsssgiJxQJSGlFKUaBVNEwFoFkdArdO6z9jwx3V9lChoBmgJaA9DCKQczCbA2G9AlIaUUpRoFU0XAWgWR0Ct1Ae0G/vfdX2UKGgGaAloD0MI7kJzncawb0CUhpRSlGgVTQYBaBZHQK3UIymALAp1fZQoaAZoCWgPQwjBkUCDTXVxQJSGlFKUaBVNHwFoFkdArdQ0K9f1H3V9lChoBmgJaA9DCEWfjzJio3BAlIaUUpRoFU0hAWgWR0Ct1E+NDMNddX2UKGgGaAloD0MI4gSm0/pscUCUhpRSlGgVTQEBaBZHQK3UsYwZflZ1fZQoaAZoCWgPQwhe9YB5iEFyQJSGlFKUaBVL7GgWR0Ct1MIakyk9dX2UKGgGaAloD0MIHzF6bqHEbkCUhpRSlGgVS/RoFkdArdUUS7GvOnV9lChoBmgJaA9DCFtc4zNZ1XFAlIaUUpRoFUvvaBZHQK3VJw8W9Dh1fZQoaAZoCWgPQwiNX3glyQduQJSGlFKUaBVL+2gWR0Ct1SyYw7DEdX2UKGgGaAloD0MI8wGBziRYb0CUhpRSlGgVS/BoFkdArdUx2OhkAnV9lChoBmgJaA9DCARWDi2yqWxAlIaUUpRoFU0iAWgWR0Ct1XT/Q0GedX2UKGgGaAloD0MIRP0ubI0Jc0CUhpRSlGgVTQEBaBZHQK3Vys4ku6F1fZQoaAZoCWgPQwhLAz+qIa9xQJSGlFKUaBVNAAFoFkdArdZxUrCm/HV9lChoBmgJaA9DCINOCB30InBAlIaUUpRoFUv9aBZHQK3Wo3Ytg8d1fZQoaAZoCWgPQwjgY7DiVCRwQJSGlFKUaBVL4WgWR0Ct1tV+Zw4sdX2UKGgGaAloD0MI9P4/Thh3cUCUhpRSlGgVTRUBaBZHQK3W8IoE0SB1fZQoaAZoCWgPQwgxXvOqjqtzQJSGlFKUaBVL/GgWR0Ct1wgDJU5udX2UKGgGaAloD0MIDJHT1zMAcECUhpRSlGgVS+toFkdArdcVcMVk+XV9lChoBmgJaA9DCLKhm/3Bz3BAlIaUUpRoFUv5aBZHQK3XFamoBJZ1fZQoaAZoCWgPQwikN9xHbtZwQJSGlFKUaBVNFgFoFkdArdcVGG21D3V9lChoBmgJaA9DCGTmApfHFG9AlIaUUpRoFUv/aBZHQK3Xt9If8uV1fZQoaAZoCWgPQwgeb/JbdEpuQJSGlFKUaBVL6GgWR0Ct1+P1ct5EdX2UKGgGaAloD0MIF9nO99NkcECUhpRSlGgVS/doFkdArdgNUCJXQ3V9lChoBmgJaA9DCEZ9kjtszXBAlIaUUpRoFU0IAWgWR0Ct2Cl/H5rQdX2UKGgGaAloD0MI2nIuxVWcbECUhpRSlGgVTTIBaBZHQK3YRjpcHGF1fZQoaAZoCWgPQwiEukihrOlsQJSGlFKUaBVNEgFoFkdArdhWqxTsIHV9lChoBmgJaA9DCNwr81ZdjHJAlIaUUpRoFUv1aBZHQK3YWblRxcV1fZQoaAZoCWgPQwjI7236M+pyQJSGlFKUaBVL6WgWR0Ct2IhUBGQTdX2UKGgGaAloD0MIIxPwa+SWckCUhpRSlGgVS+NoFkdArdlIRGtp23V9lChoBmgJaA9DCLAe961W83JAlIaUUpRoFUvYaBZHQK3ZkvugHu91fZQoaAZoCWgPQwjJA5FFmjVzQJSGlFKUaBVL7WgWR0Ct2ZnAZbY9dX2UKGgGaAloD0MI0CueemTqcECUhpRSlGgVTRMBaBZHQK3ZtKvmozh1fZQoaAZoCWgPQwhe91YkphNwQJSGlFKUaBVL7GgWR0Ct2cRr8BMjdX2UKGgGaAloD0MIVfZdEbwbc0CUhpRSlGgVS/ZoFkdArdnMu8K5TnV9lChoBmgJaA9DCNUhN8MNR3FAlIaUUpRoFUvtaBZHQK3Z0xY7q6h1fZQoaAZoCWgPQwgdcjPcgKlwQJSGlFKUaBVNAQFoFkdArdoEDdP+GXV9lChoBmgJaA9DCLeYnxvaAnNAlIaUUpRoFU0DAWgWR0Ct2qg7HQyAdX2UKGgGaAloD0MIfuNrz+w9cUCUhpRSlGgVS/doFkdArdqwIUrTY3V9lChoBmgJaA9DCH7Er1jDS0FAlIaUUpRoFUvAaBZHQK3av5wfhdd1fZQoaAZoCWgPQwiWkuUkVDJzQJSGlFKUaBVL8GgWR0Ct2sIInjQzdX2UKGgGaAloD0MICOV9HE2pcUCUhpRSlGgVS/FoFkdArdsLkU9IPXV9lChoBmgJaA9DCC9QUmABZXFAlIaUUpRoFU0IAWgWR0Ct2zZavA45dX2UKGgGaAloD0MI+zpwzsjvcECUhpRSlGgVTRQBaBZHQK3bOxiXpnp1fZQoaAZoCWgPQwiXH7jKU+9xQJSGlFKUaBVNIwFoFkdArduOaz/p+3V9lChoBmgJaA9DCIxn0ND/CXFAlIaUUpRoFUvvaBZHQK3b7zV+Zw51fZQoaAZoCWgPQwiSWFLufi9zQJSGlFKUaBVLzWgWR0Ct3BAM+eOGdX2UKGgGaAloD0MI64uEthyTcECUhpRSlGgVS+NoFkdArdwSmIj4YnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}