CA
This model is a fine-tuned version of openai/whisper-large-v3 on the 3309 CA-2024-11-28 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4321
- Wer Ortho: 23.2856
- Wer: 16.0797
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.785 | 0.5369 | 100 | 0.5298 | 29.2975 | 21.3801 |
0.546 | 1.0738 | 200 | 0.4648 | 26.4263 | 18.8952 |
0.4399 | 1.6107 | 300 | 0.4377 | 25.2369 | 18.2070 |
0.4172 | 2.1477 | 400 | 0.4270 | 24.0940 | 17.0450 |
0.3578 | 2.6846 | 500 | 0.4219 | 23.7409 | 17.0272 |
0.3183 | 3.2215 | 600 | 0.4265 | 23.7781 | 16.5803 |
0.2929 | 3.7584 | 700 | 0.4187 | 23.6480 | 16.8127 |
0.2635 | 4.2953 | 800 | 0.4248 | 23.8710 | 16.8037 |
0.2511 | 4.8322 | 900 | 0.4238 | 23.7502 | 16.7322 |
0.236 | 5.3691 | 1000 | 0.4302 | 23.7316 | 16.5088 |
0.2121 | 5.9060 | 1100 | 0.4312 | 23.5923 | 16.4015 |
0.2089 | 6.4430 | 1200 | 0.4321 | 23.2856 | 16.0797 |
Framework versions
- Transformers 4.45.1
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Makkoen/whisper-large-v3-cit-do015-wd0-lr3e-06-steps1200-CA
Base model
openai/whisper-large-v3