metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned2-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.93
ast-finetuned-audioset-10-10-0.4593-finetuned2-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3235
- Accuracy: 0.93
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6202 | 0.99 | 28 | 0.6153 | 0.83 |
0.3175 | 1.98 | 56 | 0.4811 | 0.84 |
0.123 | 2.97 | 84 | 0.4716 | 0.85 |
0.0279 | 4.0 | 113 | 0.4575 | 0.88 |
0.0348 | 4.99 | 141 | 0.4270 | 0.88 |
0.0331 | 5.98 | 169 | 0.3423 | 0.89 |
0.0022 | 6.97 | 197 | 0.3178 | 0.94 |
0.0009 | 8.0 | 226 | 0.4422 | 0.9 |
0.0006 | 8.99 | 254 | 0.3187 | 0.92 |
0.0005 | 9.91 | 280 | 0.3235 | 0.93 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.14.2
- Tokenizers 0.13.3