|
--- |
|
library_name: transformers |
|
language: |
|
- ar |
|
license: apache-2.0 |
|
base_model: openai/whisper-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- darija-c |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: Finetuned Whisper large for darija speech translation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Finetuned Whisper large for darija speech translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Darija-C dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Bleu: 0.7440 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:| |
|
| 3.145 | 0.8333 | 50 | 1.7143 | 0.0074 | |
|
| 1.5712 | 1.6667 | 100 | 0.9313 | 0.0557 | |
|
| 0.8924 | 2.5 | 150 | 0.3534 | 0.4306 | |
|
| 0.3915 | 3.3333 | 200 | 0.2014 | 0.5725 | |
|
| 0.2762 | 4.1667 | 250 | 0.0874 | 0.5841 | |
|
| 0.1136 | 5.0 | 300 | 0.0630 | 0.6672 | |
|
| 0.0777 | 5.8333 | 350 | 0.0868 | 0.6594 | |
|
| 0.0749 | 6.6667 | 400 | 0.0405 | 0.7117 | |
|
| 0.0412 | 7.5 | 450 | 0.0217 | 0.7319 | |
|
| 0.0046 | 8.3333 | 500 | 0.0414 | 0.7320 | |
|
| 0.0516 | 9.1667 | 550 | 0.0007 | 0.7440 | |
|
| 0.006 | 10.0 | 600 | 0.0001 | 0.7440 | |
|
| 0.0001 | 10.8333 | 650 | 0.0005 | 0.7440 | |
|
| 0.0006 | 11.6667 | 700 | 0.0000 | 0.7440 | |
|
| 0.0 | 12.5 | 750 | 0.0000 | 0.7440 | |
|
| 0.0 | 13.3333 | 800 | 0.0000 | 0.7440 | |
|
| 0.0 | 14.1667 | 850 | 0.0000 | 0.7440 | |
|
| 0.0 | 15.0 | 900 | 0.0000 | 0.7440 | |
|
| 0.0 | 15.8333 | 950 | 0.0000 | 0.7440 | |
|
| 0.0 | 16.6667 | 1000 | 0.0000 | 0.7440 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.21.0 |
|
|