Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

bert-base-buddhist-sanskrit

Version 2 of the BERT model described in the paper 'Embeddings models for Buddhist Sanskrit' published at LREC 2022 (https://aclanthology.org/2022.lrec-1.411/). Same training methodology has been used as for version 1, the only difference is that the model has been trained on a slightly bigger buddhist snaskrit corpus.

Funding

This work received funding from the NEH (HAA-277246-21).

Model description

The model has the bert-base architecture and configuration and was pretrained from scratch as a masked language model on the Sanskrit reference corpus, and fine-tuned on the smaller corpus of Buddhist Sanskrit.

How to use it

model = AutoModelForMaskedLM.from_pretrained("Matej/bert-base-buddhist-sanskrit")
tokenizer = AutoTokenizer.from_pretrained("Matej/bert-base-buddhist-sanskrit", use_fast=True)

Intended uses & limitations

MIT license, no limitations

Training and evaluation data

See the paper 'Embeddings models for Buddhist Sanskrit' for details on the corpora and the evaluation procedure.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.9.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.