ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task5_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9416
- Qwk: 0.4333
- Mse: 0.9416
- Rmse: 0.9703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0377 | 2 | 4.3431 | -0.0008 | 4.3431 | 2.0840 |
No log | 0.0755 | 4 | 2.5060 | 0.1117 | 2.5060 | 1.5830 |
No log | 0.1132 | 6 | 1.3539 | 0.0627 | 1.3539 | 1.1636 |
No log | 0.1509 | 8 | 1.1834 | 0.1680 | 1.1834 | 1.0878 |
No log | 0.1887 | 10 | 1.0077 | 0.2897 | 1.0077 | 1.0038 |
No log | 0.2264 | 12 | 0.9656 | 0.2865 | 0.9656 | 0.9826 |
No log | 0.2642 | 14 | 0.9498 | 0.2492 | 0.9498 | 0.9746 |
No log | 0.3019 | 16 | 0.9449 | 0.2746 | 0.9449 | 0.9721 |
No log | 0.3396 | 18 | 0.9280 | 0.3293 | 0.9280 | 0.9633 |
No log | 0.3774 | 20 | 0.9419 | 0.3713 | 0.9419 | 0.9705 |
No log | 0.4151 | 22 | 0.9147 | 0.4065 | 0.9147 | 0.9564 |
No log | 0.4528 | 24 | 0.8826 | 0.3721 | 0.8826 | 0.9395 |
No log | 0.4906 | 26 | 0.8752 | 0.4223 | 0.8752 | 0.9355 |
No log | 0.5283 | 28 | 0.8666 | 0.4867 | 0.8666 | 0.9309 |
No log | 0.5660 | 30 | 0.9803 | 0.3333 | 0.9803 | 0.9901 |
No log | 0.6038 | 32 | 1.0629 | 0.3396 | 1.0629 | 1.0310 |
No log | 0.6415 | 34 | 0.9256 | 0.5135 | 0.9256 | 0.9621 |
No log | 0.6792 | 36 | 0.8616 | 0.4065 | 0.8616 | 0.9282 |
No log | 0.7170 | 38 | 0.8219 | 0.4568 | 0.8219 | 0.9066 |
No log | 0.7547 | 40 | 0.8354 | 0.5668 | 0.8354 | 0.9140 |
No log | 0.7925 | 42 | 0.9386 | 0.4707 | 0.9386 | 0.9688 |
No log | 0.8302 | 44 | 0.8572 | 0.5658 | 0.8572 | 0.9258 |
No log | 0.8679 | 46 | 0.7516 | 0.4439 | 0.7516 | 0.8669 |
No log | 0.9057 | 48 | 0.8695 | 0.4034 | 0.8695 | 0.9325 |
No log | 0.9434 | 50 | 0.8482 | 0.4613 | 0.8482 | 0.9210 |
No log | 0.9811 | 52 | 0.7741 | 0.4411 | 0.7741 | 0.8798 |
No log | 1.0189 | 54 | 0.8846 | 0.4878 | 0.8846 | 0.9405 |
No log | 1.0566 | 56 | 0.9381 | 0.4815 | 0.9381 | 0.9686 |
No log | 1.0943 | 58 | 0.8910 | 0.5254 | 0.8910 | 0.9439 |
No log | 1.1321 | 60 | 0.8403 | 0.4603 | 0.8403 | 0.9167 |
No log | 1.1698 | 62 | 0.8066 | 0.3996 | 0.8066 | 0.8981 |
No log | 1.2075 | 64 | 0.8110 | 0.4385 | 0.8110 | 0.9005 |
No log | 1.2453 | 66 | 0.9008 | 0.4575 | 0.9008 | 0.9491 |
No log | 1.2830 | 68 | 0.8895 | 0.4575 | 0.8895 | 0.9431 |
No log | 1.3208 | 70 | 0.7635 | 0.5113 | 0.7635 | 0.8738 |
No log | 1.3585 | 72 | 0.7317 | 0.5405 | 0.7317 | 0.8554 |
No log | 1.3962 | 74 | 0.7203 | 0.4889 | 0.7203 | 0.8487 |
No log | 1.4340 | 76 | 0.7085 | 0.5098 | 0.7085 | 0.8417 |
No log | 1.4717 | 78 | 0.7240 | 0.5303 | 0.7240 | 0.8509 |
No log | 1.5094 | 80 | 0.7187 | 0.5510 | 0.7187 | 0.8477 |
No log | 1.5472 | 82 | 0.6939 | 0.5510 | 0.6939 | 0.8330 |
No log | 1.5849 | 84 | 0.6631 | 0.5405 | 0.6631 | 0.8143 |
No log | 1.6226 | 86 | 0.7455 | 0.4467 | 0.7455 | 0.8634 |
No log | 1.6604 | 88 | 0.7487 | 0.4330 | 0.7487 | 0.8653 |
No log | 1.6981 | 90 | 0.7574 | 0.4724 | 0.7574 | 0.8703 |
No log | 1.7358 | 92 | 0.8651 | 0.4931 | 0.8651 | 0.9301 |
No log | 1.7736 | 94 | 0.8031 | 0.5366 | 0.8031 | 0.8962 |
No log | 1.8113 | 96 | 0.7102 | 0.5316 | 0.7102 | 0.8427 |
No log | 1.8491 | 98 | 0.6671 | 0.5771 | 0.6671 | 0.8167 |
No log | 1.8868 | 100 | 0.6880 | 0.5811 | 0.6880 | 0.8295 |
No log | 1.9245 | 102 | 0.6635 | 0.5874 | 0.6635 | 0.8145 |
No log | 1.9623 | 104 | 0.6632 | 0.5084 | 0.6632 | 0.8144 |
No log | 2.0 | 106 | 0.7978 | 0.5563 | 0.7978 | 0.8932 |
No log | 2.0377 | 108 | 0.7813 | 0.5563 | 0.7813 | 0.8839 |
No log | 2.0755 | 110 | 0.6346 | 0.5326 | 0.6346 | 0.7966 |
No log | 2.1132 | 112 | 0.5927 | 0.6229 | 0.5927 | 0.7698 |
No log | 2.1509 | 114 | 0.6034 | 0.6319 | 0.6034 | 0.7768 |
No log | 2.1887 | 116 | 0.6091 | 0.6067 | 0.6091 | 0.7804 |
No log | 2.2264 | 118 | 0.7940 | 0.5270 | 0.7940 | 0.8911 |
No log | 2.2642 | 120 | 0.9979 | 0.375 | 0.9979 | 0.9989 |
No log | 2.3019 | 122 | 0.8626 | 0.4728 | 0.8626 | 0.9288 |
No log | 2.3396 | 124 | 0.6249 | 0.5747 | 0.6249 | 0.7905 |
No log | 2.3774 | 126 | 0.6406 | 0.6189 | 0.6406 | 0.8004 |
No log | 2.4151 | 128 | 0.6850 | 0.6151 | 0.6850 | 0.8276 |
No log | 2.4528 | 130 | 0.6373 | 0.6160 | 0.6373 | 0.7983 |
No log | 2.4906 | 132 | 0.6188 | 0.6041 | 0.6188 | 0.7866 |
No log | 2.5283 | 134 | 0.6275 | 0.6185 | 0.6275 | 0.7921 |
No log | 2.5660 | 136 | 0.6313 | 0.5988 | 0.6313 | 0.7945 |
No log | 2.6038 | 138 | 0.6185 | 0.6128 | 0.6185 | 0.7865 |
No log | 2.6415 | 140 | 0.6225 | 0.6165 | 0.6225 | 0.7890 |
No log | 2.6792 | 142 | 0.6313 | 0.5746 | 0.6313 | 0.7946 |
No log | 2.7170 | 144 | 0.6625 | 0.5692 | 0.6625 | 0.8140 |
No log | 2.7547 | 146 | 0.7226 | 0.5229 | 0.7226 | 0.8500 |
No log | 2.7925 | 148 | 0.7231 | 0.5230 | 0.7231 | 0.8504 |
No log | 2.8302 | 150 | 0.6117 | 0.6364 | 0.6117 | 0.7821 |
No log | 2.8679 | 152 | 0.5949 | 0.6320 | 0.5949 | 0.7713 |
No log | 2.9057 | 154 | 0.6084 | 0.6164 | 0.6084 | 0.7800 |
No log | 2.9434 | 156 | 0.6165 | 0.5735 | 0.6165 | 0.7852 |
No log | 2.9811 | 158 | 0.6685 | 0.5103 | 0.6685 | 0.8176 |
No log | 3.0189 | 160 | 0.6240 | 0.5523 | 0.6240 | 0.7899 |
No log | 3.0566 | 162 | 0.5889 | 0.6256 | 0.5889 | 0.7674 |
No log | 3.0943 | 164 | 0.5841 | 0.6356 | 0.5841 | 0.7643 |
No log | 3.1321 | 166 | 0.5787 | 0.6659 | 0.5787 | 0.7607 |
No log | 3.1698 | 168 | 0.6180 | 0.6479 | 0.6180 | 0.7861 |
No log | 3.2075 | 170 | 0.6266 | 0.5561 | 0.6266 | 0.7916 |
No log | 3.2453 | 172 | 0.6266 | 0.5672 | 0.6266 | 0.7916 |
No log | 3.2830 | 174 | 0.6028 | 0.5549 | 0.6028 | 0.7764 |
No log | 3.3208 | 176 | 0.5924 | 0.6117 | 0.5924 | 0.7697 |
No log | 3.3585 | 178 | 0.5936 | 0.6400 | 0.5936 | 0.7705 |
No log | 3.3962 | 180 | 0.6284 | 0.5837 | 0.6284 | 0.7927 |
No log | 3.4340 | 182 | 0.6824 | 0.5870 | 0.6824 | 0.8261 |
No log | 3.4717 | 184 | 0.6308 | 0.5993 | 0.6308 | 0.7942 |
No log | 3.5094 | 186 | 0.5972 | 0.5666 | 0.5972 | 0.7728 |
No log | 3.5472 | 188 | 0.6394 | 0.5123 | 0.6394 | 0.7996 |
No log | 3.5849 | 190 | 0.6671 | 0.5123 | 0.6671 | 0.8168 |
No log | 3.6226 | 192 | 0.6548 | 0.5011 | 0.6548 | 0.8092 |
No log | 3.6604 | 194 | 0.6623 | 0.5051 | 0.6623 | 0.8138 |
No log | 3.6981 | 196 | 0.7259 | 0.5255 | 0.7259 | 0.8520 |
No log | 3.7358 | 198 | 0.7050 | 0.5708 | 0.7050 | 0.8396 |
No log | 3.7736 | 200 | 0.5990 | 0.6175 | 0.5990 | 0.7740 |
No log | 3.8113 | 202 | 0.5654 | 0.6438 | 0.5654 | 0.7520 |
No log | 3.8491 | 204 | 0.5619 | 0.6589 | 0.5619 | 0.7496 |
No log | 3.8868 | 206 | 0.5497 | 0.6087 | 0.5497 | 0.7414 |
No log | 3.9245 | 208 | 0.5993 | 0.6828 | 0.5993 | 0.7742 |
No log | 3.9623 | 210 | 0.6485 | 0.6699 | 0.6485 | 0.8053 |
No log | 4.0 | 212 | 0.6479 | 0.5782 | 0.6479 | 0.8049 |
No log | 4.0377 | 214 | 0.5935 | 0.6087 | 0.5935 | 0.7704 |
No log | 4.0755 | 216 | 0.5878 | 0.6084 | 0.5878 | 0.7667 |
No log | 4.1132 | 218 | 0.5822 | 0.5563 | 0.5822 | 0.7630 |
No log | 4.1509 | 220 | 0.6073 | 0.5656 | 0.6073 | 0.7793 |
No log | 4.1887 | 222 | 0.7414 | 0.5488 | 0.7414 | 0.8610 |
No log | 4.2264 | 224 | 0.9306 | 0.4987 | 0.9306 | 0.9647 |
No log | 4.2642 | 226 | 0.8794 | 0.5295 | 0.8794 | 0.9378 |
No log | 4.3019 | 228 | 0.8252 | 0.5683 | 0.8252 | 0.9084 |
No log | 4.3396 | 230 | 0.6202 | 0.6173 | 0.6202 | 0.7875 |
No log | 4.3774 | 232 | 0.5888 | 0.6302 | 0.5888 | 0.7673 |
No log | 4.4151 | 234 | 0.7016 | 0.5257 | 0.7016 | 0.8376 |
No log | 4.4528 | 236 | 0.8066 | 0.5283 | 0.8066 | 0.8981 |
No log | 4.4906 | 238 | 0.7012 | 0.5019 | 0.7012 | 0.8373 |
No log | 4.5283 | 240 | 0.6219 | 0.5561 | 0.6219 | 0.7886 |
No log | 4.5660 | 242 | 0.6108 | 0.6325 | 0.6108 | 0.7815 |
No log | 4.6038 | 244 | 0.6470 | 0.6244 | 0.6470 | 0.8043 |
No log | 4.6415 | 246 | 0.6703 | 0.5884 | 0.6703 | 0.8187 |
No log | 4.6792 | 248 | 0.6666 | 0.5759 | 0.6666 | 0.8165 |
No log | 4.7170 | 250 | 0.6847 | 0.5565 | 0.6847 | 0.8275 |
No log | 4.7547 | 252 | 0.7120 | 0.5804 | 0.7120 | 0.8438 |
No log | 4.7925 | 254 | 0.6530 | 0.5117 | 0.6530 | 0.8081 |
No log | 4.8302 | 256 | 0.6253 | 0.4951 | 0.6253 | 0.7907 |
No log | 4.8679 | 258 | 0.6055 | 0.5876 | 0.6055 | 0.7782 |
No log | 4.9057 | 260 | 0.5579 | 0.6407 | 0.5579 | 0.7469 |
No log | 4.9434 | 262 | 0.5554 | 0.6407 | 0.5554 | 0.7452 |
No log | 4.9811 | 264 | 0.5862 | 0.5331 | 0.5862 | 0.7657 |
No log | 5.0189 | 266 | 0.6901 | 0.5504 | 0.6901 | 0.8307 |
No log | 5.0566 | 268 | 0.7822 | 0.4654 | 0.7822 | 0.8844 |
No log | 5.0943 | 270 | 0.7385 | 0.4497 | 0.7385 | 0.8594 |
No log | 5.1321 | 272 | 0.6656 | 0.4941 | 0.6656 | 0.8159 |
No log | 5.1698 | 274 | 0.6282 | 0.5618 | 0.6282 | 0.7926 |
No log | 5.2075 | 276 | 0.6254 | 0.5798 | 0.6254 | 0.7908 |
No log | 5.2453 | 278 | 0.5878 | 0.5631 | 0.5878 | 0.7667 |
No log | 5.2830 | 280 | 0.7482 | 0.5881 | 0.7482 | 0.8650 |
No log | 5.3208 | 282 | 1.0094 | 0.4469 | 1.0094 | 1.0047 |
No log | 5.3585 | 284 | 1.0070 | 0.4740 | 1.0070 | 1.0035 |
No log | 5.3962 | 286 | 0.8044 | 0.5681 | 0.8044 | 0.8969 |
No log | 5.4340 | 288 | 0.6256 | 0.5783 | 0.6256 | 0.7909 |
No log | 5.4717 | 290 | 0.6371 | 0.5231 | 0.6371 | 0.7982 |
No log | 5.5094 | 292 | 0.6817 | 0.5349 | 0.6817 | 0.8257 |
No log | 5.5472 | 294 | 0.6774 | 0.4606 | 0.6774 | 0.8230 |
No log | 5.5849 | 296 | 0.6622 | 0.4892 | 0.6622 | 0.8138 |
No log | 5.6226 | 298 | 0.6474 | 0.5210 | 0.6474 | 0.8046 |
No log | 5.6604 | 300 | 0.6703 | 0.6120 | 0.6703 | 0.8187 |
No log | 5.6981 | 302 | 0.7262 | 0.5547 | 0.7262 | 0.8522 |
No log | 5.7358 | 304 | 0.7493 | 0.5729 | 0.7493 | 0.8656 |
No log | 5.7736 | 306 | 0.6762 | 0.5918 | 0.6762 | 0.8223 |
No log | 5.8113 | 308 | 0.6068 | 0.6125 | 0.6068 | 0.7790 |
No log | 5.8491 | 310 | 0.6025 | 0.6584 | 0.6025 | 0.7762 |
No log | 5.8868 | 312 | 0.6113 | 0.5549 | 0.6113 | 0.7819 |
No log | 5.9245 | 314 | 0.6352 | 0.5165 | 0.6352 | 0.7970 |
No log | 5.9623 | 316 | 0.6500 | 0.5165 | 0.6500 | 0.8062 |
No log | 6.0 | 318 | 0.6490 | 0.5408 | 0.6490 | 0.8056 |
No log | 6.0377 | 320 | 0.6319 | 0.5889 | 0.6319 | 0.7949 |
No log | 6.0755 | 322 | 0.6134 | 0.5405 | 0.6134 | 0.7832 |
No log | 6.1132 | 324 | 0.5987 | 0.6241 | 0.5987 | 0.7738 |
No log | 6.1509 | 326 | 0.5828 | 0.5797 | 0.5828 | 0.7634 |
No log | 6.1887 | 328 | 0.5799 | 0.5386 | 0.5799 | 0.7615 |
No log | 6.2264 | 330 | 0.5754 | 0.5822 | 0.5754 | 0.7586 |
No log | 6.2642 | 332 | 0.5834 | 0.5405 | 0.5834 | 0.7638 |
No log | 6.3019 | 334 | 0.6353 | 0.5928 | 0.6353 | 0.7970 |
No log | 6.3396 | 336 | 0.7385 | 0.6072 | 0.7385 | 0.8593 |
No log | 6.3774 | 338 | 0.7217 | 0.5951 | 0.7217 | 0.8495 |
No log | 6.4151 | 340 | 0.6307 | 0.5329 | 0.6307 | 0.7942 |
No log | 6.4528 | 342 | 0.5989 | 0.6001 | 0.5989 | 0.7739 |
No log | 6.4906 | 344 | 0.6077 | 0.5874 | 0.6077 | 0.7796 |
No log | 6.5283 | 346 | 0.6065 | 0.6327 | 0.6065 | 0.7788 |
No log | 6.5660 | 348 | 0.6610 | 0.5873 | 0.6610 | 0.8130 |
No log | 6.6038 | 350 | 0.6781 | 0.5560 | 0.6781 | 0.8235 |
No log | 6.6415 | 352 | 0.6973 | 0.5793 | 0.6973 | 0.8350 |
No log | 6.6792 | 354 | 0.6195 | 0.6456 | 0.6195 | 0.7871 |
No log | 6.7170 | 356 | 0.5756 | 0.6087 | 0.5756 | 0.7587 |
No log | 6.7547 | 358 | 0.5692 | 0.6327 | 0.5692 | 0.7544 |
No log | 6.7925 | 360 | 0.5743 | 0.5759 | 0.5743 | 0.7578 |
No log | 6.8302 | 362 | 0.5942 | 0.5666 | 0.5942 | 0.7708 |
No log | 6.8679 | 364 | 0.6069 | 0.4951 | 0.6069 | 0.7791 |
No log | 6.9057 | 366 | 0.6043 | 0.5902 | 0.6043 | 0.7774 |
No log | 6.9434 | 368 | 0.5905 | 0.5989 | 0.5905 | 0.7684 |
No log | 6.9811 | 370 | 0.5857 | 0.5989 | 0.5857 | 0.7653 |
No log | 7.0189 | 372 | 0.5815 | 0.5989 | 0.5815 | 0.7625 |
No log | 7.0566 | 374 | 0.5808 | 0.5989 | 0.5808 | 0.7621 |
No log | 7.0943 | 376 | 0.5801 | 0.5989 | 0.5801 | 0.7616 |
No log | 7.1321 | 378 | 0.5731 | 0.5989 | 0.5731 | 0.7570 |
No log | 7.1698 | 380 | 0.5799 | 0.5562 | 0.5799 | 0.7615 |
No log | 7.2075 | 382 | 0.6543 | 0.6081 | 0.6543 | 0.8089 |
No log | 7.2453 | 384 | 0.6970 | 0.6269 | 0.6970 | 0.8348 |
No log | 7.2830 | 386 | 0.6492 | 0.6269 | 0.6492 | 0.8057 |
No log | 7.3208 | 388 | 0.5663 | 0.6217 | 0.5663 | 0.7525 |
No log | 7.3585 | 390 | 0.6007 | 0.6177 | 0.6007 | 0.7750 |
No log | 7.3962 | 392 | 0.6617 | 0.6240 | 0.6617 | 0.8135 |
No log | 7.4340 | 394 | 0.6379 | 0.5666 | 0.6379 | 0.7987 |
No log | 7.4717 | 396 | 0.5891 | 0.5522 | 0.5891 | 0.7675 |
No log | 7.5094 | 398 | 0.6081 | 0.5359 | 0.6081 | 0.7798 |
No log | 7.5472 | 400 | 0.6128 | 0.5486 | 0.6128 | 0.7828 |
No log | 7.5849 | 402 | 0.5782 | 0.6067 | 0.5782 | 0.7604 |
No log | 7.6226 | 404 | 0.5742 | 0.5886 | 0.5742 | 0.7578 |
No log | 7.6604 | 406 | 0.6045 | 0.5472 | 0.6045 | 0.7775 |
No log | 7.6981 | 408 | 0.5824 | 0.5522 | 0.5824 | 0.7631 |
No log | 7.7358 | 410 | 0.5554 | 0.5835 | 0.5554 | 0.7452 |
No log | 7.7736 | 412 | 0.5513 | 0.5831 | 0.5513 | 0.7425 |
No log | 7.8113 | 414 | 0.5462 | 0.6507 | 0.5462 | 0.7390 |
No log | 7.8491 | 416 | 0.5385 | 0.6788 | 0.5385 | 0.7338 |
No log | 7.8868 | 418 | 0.5515 | 0.6673 | 0.5515 | 0.7426 |
No log | 7.9245 | 420 | 0.5565 | 0.6456 | 0.5565 | 0.7460 |
No log | 7.9623 | 422 | 0.5794 | 0.5210 | 0.5794 | 0.7612 |
No log | 8.0 | 424 | 0.5959 | 0.5578 | 0.5959 | 0.7719 |
No log | 8.0377 | 426 | 0.5982 | 0.5440 | 0.5982 | 0.7734 |
No log | 8.0755 | 428 | 0.5963 | 0.5440 | 0.5963 | 0.7722 |
No log | 8.1132 | 430 | 0.5886 | 0.5703 | 0.5886 | 0.7672 |
No log | 8.1509 | 432 | 0.6235 | 0.5359 | 0.6235 | 0.7896 |
No log | 8.1887 | 434 | 0.6700 | 0.6081 | 0.6700 | 0.8185 |
No log | 8.2264 | 436 | 0.7178 | 0.6293 | 0.7178 | 0.8472 |
No log | 8.2642 | 438 | 0.6443 | 0.5706 | 0.6443 | 0.8027 |
No log | 8.3019 | 440 | 0.5743 | 0.6456 | 0.5743 | 0.7578 |
No log | 8.3396 | 442 | 0.5928 | 0.5472 | 0.5928 | 0.7699 |
No log | 8.3774 | 444 | 0.5922 | 0.5700 | 0.5922 | 0.7695 |
No log | 8.4151 | 446 | 0.6016 | 0.5809 | 0.6016 | 0.7756 |
No log | 8.4528 | 448 | 0.6520 | 0.5472 | 0.6520 | 0.8074 |
No log | 8.4906 | 450 | 0.6638 | 0.5242 | 0.6638 | 0.8147 |
No log | 8.5283 | 452 | 0.6163 | 0.5343 | 0.6163 | 0.7850 |
No log | 8.5660 | 454 | 0.6094 | 0.5357 | 0.6094 | 0.7806 |
No log | 8.6038 | 456 | 0.5751 | 0.5568 | 0.5751 | 0.7584 |
No log | 8.6415 | 458 | 0.5668 | 0.5568 | 0.5668 | 0.7528 |
No log | 8.6792 | 460 | 0.5656 | 0.5568 | 0.5656 | 0.7521 |
No log | 8.7170 | 462 | 0.6112 | 0.5581 | 0.6112 | 0.7818 |
No log | 8.7547 | 464 | 0.5987 | 0.5078 | 0.5987 | 0.7738 |
No log | 8.7925 | 466 | 0.5927 | 0.5568 | 0.5927 | 0.7699 |
No log | 8.8302 | 468 | 0.5829 | 0.5782 | 0.5829 | 0.7635 |
No log | 8.8679 | 470 | 0.5753 | 0.6636 | 0.5753 | 0.7585 |
No log | 8.9057 | 472 | 0.5633 | 0.6598 | 0.5633 | 0.7505 |
No log | 8.9434 | 474 | 0.5818 | 0.6516 | 0.5818 | 0.7628 |
No log | 8.9811 | 476 | 0.6217 | 0.6317 | 0.6217 | 0.7885 |
No log | 9.0189 | 478 | 0.6764 | 0.6130 | 0.6764 | 0.8225 |
No log | 9.0566 | 480 | 0.6117 | 0.6120 | 0.6117 | 0.7821 |
No log | 9.0943 | 482 | 0.5940 | 0.5684 | 0.5940 | 0.7707 |
No log | 9.1321 | 484 | 0.6215 | 0.5573 | 0.6215 | 0.7883 |
No log | 9.1698 | 486 | 0.6838 | 0.5816 | 0.6838 | 0.8269 |
No log | 9.2075 | 488 | 0.7662 | 0.5780 | 0.7662 | 0.8753 |
No log | 9.2453 | 490 | 0.7799 | 0.5780 | 0.7799 | 0.8831 |
No log | 9.2830 | 492 | 0.7212 | 0.5815 | 0.7212 | 0.8492 |
No log | 9.3208 | 494 | 0.6152 | 0.5945 | 0.6152 | 0.7844 |
No log | 9.3585 | 496 | 0.5838 | 0.5197 | 0.5838 | 0.7641 |
No log | 9.3962 | 498 | 0.6060 | 0.5197 | 0.6060 | 0.7785 |
0.2158 | 9.4340 | 500 | 0.5976 | 0.5679 | 0.5976 | 0.7730 |
0.2158 | 9.4717 | 502 | 0.5928 | 0.6128 | 0.5928 | 0.7699 |
0.2158 | 9.5094 | 504 | 0.5963 | 0.5197 | 0.5963 | 0.7722 |
0.2158 | 9.5472 | 506 | 0.6588 | 0.5118 | 0.6588 | 0.8117 |
0.2158 | 9.5849 | 508 | 0.8613 | 0.4077 | 0.8613 | 0.9281 |
0.2158 | 9.6226 | 510 | 0.9599 | 0.4534 | 0.9599 | 0.9797 |
0.2158 | 9.6604 | 512 | 0.9416 | 0.4333 | 0.9416 | 0.9703 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task5_organization
Base model
aubmindlab/bert-base-arabertv02