ArabicNewSplits8_FineTuningAraBERT_noAug_task4_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1578
- Qwk: -0.0455
- Mse: 1.1578
- Rmse: 1.0760
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 5.9204 | -0.0168 | 5.9204 | 2.4332 |
No log | 1.3333 | 4 | 3.8580 | -0.0985 | 3.8580 | 1.9642 |
No log | 2.0 | 6 | 1.9360 | -0.1000 | 1.9360 | 1.3914 |
No log | 2.6667 | 8 | 1.2794 | -0.1415 | 1.2794 | 1.1311 |
No log | 3.3333 | 10 | 1.2565 | -0.1163 | 1.2565 | 1.1209 |
No log | 4.0 | 12 | 1.8380 | -0.2093 | 1.8380 | 1.3557 |
No log | 4.6667 | 14 | 1.8848 | -0.1754 | 1.8848 | 1.3729 |
No log | 5.3333 | 16 | 2.2755 | -0.1874 | 2.2755 | 1.5085 |
No log | 6.0 | 18 | 2.2763 | -0.1832 | 2.2763 | 1.5088 |
No log | 6.6667 | 20 | 1.7516 | -0.1321 | 1.7516 | 1.3235 |
No log | 7.3333 | 22 | 1.4979 | -0.1579 | 1.4979 | 1.2239 |
No log | 8.0 | 24 | 1.4029 | -0.2072 | 1.4029 | 1.1845 |
No log | 8.6667 | 26 | 1.3581 | -0.1880 | 1.3581 | 1.1654 |
No log | 9.3333 | 28 | 1.3189 | -0.2277 | 1.3189 | 1.1484 |
No log | 10.0 | 30 | 1.2172 | -0.0652 | 1.2172 | 1.1033 |
No log | 10.6667 | 32 | 1.1941 | -0.0513 | 1.1941 | 1.0927 |
No log | 11.3333 | 34 | 1.1486 | -0.0817 | 1.1486 | 1.0717 |
No log | 12.0 | 36 | 1.2427 | -0.0690 | 1.2427 | 1.1148 |
No log | 12.6667 | 38 | 1.3718 | -0.0655 | 1.3718 | 1.1712 |
No log | 13.3333 | 40 | 1.2895 | -0.0623 | 1.2895 | 1.1355 |
No log | 14.0 | 42 | 1.2825 | -0.1097 | 1.2825 | 1.1325 |
No log | 14.6667 | 44 | 1.3660 | -0.1976 | 1.3660 | 1.1688 |
No log | 15.3333 | 46 | 1.3971 | -0.1239 | 1.3971 | 1.1820 |
No log | 16.0 | 48 | 1.4523 | -0.1498 | 1.4523 | 1.2051 |
No log | 16.6667 | 50 | 1.4551 | -0.2685 | 1.4551 | 1.2063 |
No log | 17.3333 | 52 | 1.3642 | -0.2589 | 1.3642 | 1.1680 |
No log | 18.0 | 54 | 1.2834 | -0.1345 | 1.2834 | 1.1329 |
No log | 18.6667 | 56 | 1.3153 | -0.1238 | 1.3153 | 1.1469 |
No log | 19.3333 | 58 | 1.4973 | -0.2612 | 1.4973 | 1.2237 |
No log | 20.0 | 60 | 1.6327 | -0.1554 | 1.6327 | 1.2778 |
No log | 20.6667 | 62 | 1.4672 | -0.1009 | 1.4672 | 1.2113 |
No log | 21.3333 | 64 | 1.3410 | -0.1481 | 1.3410 | 1.1580 |
No log | 22.0 | 66 | 1.3545 | -0.1394 | 1.3545 | 1.1638 |
No log | 22.6667 | 68 | 1.5025 | -0.0935 | 1.5025 | 1.2258 |
No log | 23.3333 | 70 | 1.5746 | -0.2137 | 1.5746 | 1.2548 |
No log | 24.0 | 72 | 1.5052 | -0.1807 | 1.5052 | 1.2269 |
No log | 24.6667 | 74 | 1.3492 | -0.1367 | 1.3492 | 1.1615 |
No log | 25.3333 | 76 | 1.3460 | -0.1097 | 1.3460 | 1.1602 |
No log | 26.0 | 78 | 1.2371 | -0.2733 | 1.2371 | 1.1122 |
No log | 26.6667 | 80 | 1.2849 | 0.1397 | 1.2849 | 1.1335 |
No log | 27.3333 | 82 | 1.3523 | -0.0525 | 1.3523 | 1.1629 |
No log | 28.0 | 84 | 1.2869 | 0.1206 | 1.2869 | 1.1344 |
No log | 28.6667 | 86 | 1.1979 | 0.0271 | 1.1979 | 1.0945 |
No log | 29.3333 | 88 | 1.2024 | -0.0616 | 1.2024 | 1.0965 |
No log | 30.0 | 90 | 1.2214 | -0.0100 | 1.2214 | 1.1052 |
No log | 30.6667 | 92 | 1.3249 | -0.1805 | 1.3249 | 1.1510 |
No log | 31.3333 | 94 | 1.3365 | -0.2072 | 1.3365 | 1.1561 |
No log | 32.0 | 96 | 1.2836 | 0.0418 | 1.2836 | 1.1329 |
No log | 32.6667 | 98 | 1.2571 | 0.0067 | 1.2571 | 1.1212 |
No log | 33.3333 | 100 | 1.2612 | 0.0558 | 1.2612 | 1.1230 |
No log | 34.0 | 102 | 1.3075 | 0.0195 | 1.3075 | 1.1435 |
No log | 34.6667 | 104 | 1.3924 | -0.0924 | 1.3924 | 1.1800 |
No log | 35.3333 | 106 | 1.5376 | -0.1285 | 1.5376 | 1.2400 |
No log | 36.0 | 108 | 1.5649 | -0.0972 | 1.5649 | 1.2510 |
No log | 36.6667 | 110 | 1.4357 | -0.0259 | 1.4357 | 1.1982 |
No log | 37.3333 | 112 | 1.2533 | 0.0412 | 1.2533 | 1.1195 |
No log | 38.0 | 114 | 1.1760 | 0.0771 | 1.1760 | 1.0844 |
No log | 38.6667 | 116 | 1.1396 | 0.0771 | 1.1396 | 1.0675 |
No log | 39.3333 | 118 | 1.1502 | 0.0386 | 1.1502 | 1.0725 |
No log | 40.0 | 120 | 1.1707 | 0.0386 | 1.1707 | 1.0820 |
No log | 40.6667 | 122 | 1.1921 | 0.0558 | 1.1921 | 1.0918 |
No log | 41.3333 | 124 | 1.2350 | -0.0095 | 1.2350 | 1.1113 |
No log | 42.0 | 126 | 1.2071 | -0.0095 | 1.2071 | 1.0987 |
No log | 42.6667 | 128 | 1.1615 | -0.0854 | 1.1615 | 1.0777 |
No log | 43.3333 | 130 | 1.1584 | -0.0850 | 1.1584 | 1.0763 |
No log | 44.0 | 132 | 1.1811 | -0.1151 | 1.1811 | 1.0868 |
No log | 44.6667 | 134 | 1.2010 | -0.1097 | 1.2010 | 1.0959 |
No log | 45.3333 | 136 | 1.2743 | -0.0271 | 1.2743 | 1.1289 |
No log | 46.0 | 138 | 1.2960 | -0.1022 | 1.2960 | 1.1384 |
No log | 46.6667 | 140 | 1.3170 | -0.2072 | 1.3170 | 1.1476 |
No log | 47.3333 | 142 | 1.2513 | -0.0433 | 1.2513 | 1.1186 |
No log | 48.0 | 144 | 1.1718 | 0.0531 | 1.1718 | 1.0825 |
No log | 48.6667 | 146 | 1.1741 | -0.1224 | 1.1741 | 1.0835 |
No log | 49.3333 | 148 | 1.1981 | -0.1540 | 1.1981 | 1.0946 |
No log | 50.0 | 150 | 1.2483 | -0.0095 | 1.2483 | 1.1173 |
No log | 50.6667 | 152 | 1.3471 | -0.0554 | 1.3471 | 1.1606 |
No log | 51.3333 | 154 | 1.3759 | -0.1464 | 1.3759 | 1.1730 |
No log | 52.0 | 156 | 1.3140 | -0.1741 | 1.3140 | 1.1463 |
No log | 52.6667 | 158 | 1.2224 | -0.0427 | 1.2224 | 1.1056 |
No log | 53.3333 | 160 | 1.1527 | 0.0067 | 1.1527 | 1.0736 |
No log | 54.0 | 162 | 1.0923 | 0.1127 | 1.0923 | 1.0451 |
No log | 54.6667 | 164 | 1.0634 | 0.0238 | 1.0634 | 1.0312 |
No log | 55.3333 | 166 | 1.0745 | 0.1591 | 1.0745 | 1.0366 |
No log | 56.0 | 168 | 1.1132 | 0.1507 | 1.1132 | 1.0551 |
No log | 56.6667 | 170 | 1.1655 | 0.0591 | 1.1655 | 1.0796 |
No log | 57.3333 | 172 | 1.1974 | 0.0418 | 1.1974 | 1.0943 |
No log | 58.0 | 174 | 1.1892 | 0.0238 | 1.1892 | 1.0905 |
No log | 58.6667 | 176 | 1.2503 | -0.0275 | 1.2503 | 1.1182 |
No log | 59.3333 | 178 | 1.2641 | -0.0275 | 1.2641 | 1.1243 |
No log | 60.0 | 180 | 1.2830 | -0.0265 | 1.2830 | 1.1327 |
No log | 60.6667 | 182 | 1.2787 | 0.0101 | 1.2787 | 1.1308 |
No log | 61.3333 | 184 | 1.2386 | 0.0474 | 1.2386 | 1.1129 |
No log | 62.0 | 186 | 1.1705 | 0.0835 | 1.1705 | 1.0819 |
No log | 62.6667 | 188 | 1.0928 | 0.1397 | 1.0928 | 1.0454 |
No log | 63.3333 | 190 | 1.0399 | 0.0622 | 1.0399 | 1.0198 |
No log | 64.0 | 192 | 1.0266 | 0.1533 | 1.0266 | 1.0132 |
No log | 64.6667 | 194 | 1.0338 | 0.0987 | 1.0338 | 1.0167 |
No log | 65.3333 | 196 | 1.0417 | 0.0987 | 1.0417 | 1.0207 |
No log | 66.0 | 198 | 1.0641 | 0.0766 | 1.0641 | 1.0316 |
No log | 66.6667 | 200 | 1.1138 | 0.0731 | 1.1138 | 1.0554 |
No log | 67.3333 | 202 | 1.1669 | 0.0560 | 1.1669 | 1.0802 |
No log | 68.0 | 204 | 1.1792 | 0.0392 | 1.1792 | 1.0859 |
No log | 68.6667 | 206 | 1.1604 | 0.0392 | 1.1604 | 1.0772 |
No log | 69.3333 | 208 | 1.1420 | 0.0064 | 1.1420 | 1.0687 |
No log | 70.0 | 210 | 1.1363 | 0.0226 | 1.1363 | 1.0660 |
No log | 70.6667 | 212 | 1.1500 | -0.0100 | 1.1500 | 1.0724 |
No log | 71.3333 | 214 | 1.1589 | -0.0100 | 1.1589 | 1.0765 |
No log | 72.0 | 216 | 1.1504 | 0.0226 | 1.1504 | 1.0726 |
No log | 72.6667 | 218 | 1.1563 | -0.0461 | 1.1563 | 1.0753 |
No log | 73.3333 | 220 | 1.1763 | 0.0216 | 1.1763 | 1.0846 |
No log | 74.0 | 222 | 1.2127 | 0.0731 | 1.2127 | 1.1012 |
No log | 74.6667 | 224 | 1.2293 | 0.0049 | 1.2293 | 1.1087 |
No log | 75.3333 | 226 | 1.2276 | 0.0049 | 1.2276 | 1.1080 |
No log | 76.0 | 228 | 1.2164 | -0.0114 | 1.2164 | 1.1029 |
No log | 76.6667 | 230 | 1.1913 | 0.0560 | 1.1913 | 1.0915 |
No log | 77.3333 | 232 | 1.1687 | 0.0560 | 1.1687 | 1.0810 |
No log | 78.0 | 234 | 1.1487 | 0.0392 | 1.1487 | 1.0718 |
No log | 78.6667 | 236 | 1.1456 | -0.0455 | 1.1456 | 1.0703 |
No log | 79.3333 | 238 | 1.1327 | -0.0100 | 1.1327 | 1.0643 |
No log | 80.0 | 240 | 1.1271 | -0.0455 | 1.1271 | 1.0616 |
No log | 80.6667 | 242 | 1.1153 | -0.0289 | 1.1153 | 1.0561 |
No log | 81.3333 | 244 | 1.1123 | -0.0486 | 1.1123 | 1.0547 |
No log | 82.0 | 246 | 1.1203 | -0.0120 | 1.1203 | 1.0584 |
No log | 82.6667 | 248 | 1.1301 | -0.0289 | 1.1301 | 1.0631 |
No log | 83.3333 | 250 | 1.1288 | -0.0289 | 1.1288 | 1.0624 |
No log | 84.0 | 252 | 1.1253 | -0.0289 | 1.1253 | 1.0608 |
No log | 84.6667 | 254 | 1.1214 | 0.0067 | 1.1214 | 1.0590 |
No log | 85.3333 | 256 | 1.1279 | 0.0238 | 1.1279 | 1.0620 |
No log | 86.0 | 258 | 1.1485 | 0.0392 | 1.1485 | 1.0717 |
No log | 86.6667 | 260 | 1.1709 | -0.0275 | 1.1709 | 1.0821 |
No log | 87.3333 | 262 | 1.1837 | 0.0067 | 1.1837 | 1.0880 |
No log | 88.0 | 264 | 1.1968 | -0.0100 | 1.1968 | 1.0940 |
No log | 88.6667 | 266 | 1.2095 | -0.0100 | 1.2095 | 1.0998 |
No log | 89.3333 | 268 | 1.2158 | -0.0100 | 1.2158 | 1.1026 |
No log | 90.0 | 270 | 1.2235 | -0.0100 | 1.2235 | 1.1061 |
No log | 90.6667 | 272 | 1.2301 | -0.0100 | 1.2301 | 1.1091 |
No log | 91.3333 | 274 | 1.2391 | -0.0100 | 1.2391 | 1.1132 |
No log | 92.0 | 276 | 1.2413 | -0.0265 | 1.2413 | 1.1142 |
No log | 92.6667 | 278 | 1.2386 | -0.0265 | 1.2386 | 1.1129 |
No log | 93.3333 | 280 | 1.2290 | 0.0082 | 1.2290 | 1.1086 |
No log | 94.0 | 282 | 1.2154 | -0.0252 | 1.2154 | 1.1025 |
No log | 94.6667 | 284 | 1.2004 | -0.0433 | 1.2004 | 1.0956 |
No log | 95.3333 | 286 | 1.1914 | -0.0433 | 1.1914 | 1.0915 |
No log | 96.0 | 288 | 1.1847 | -0.0433 | 1.1847 | 1.0884 |
No log | 96.6667 | 290 | 1.1772 | -0.0618 | 1.1772 | 1.0850 |
No log | 97.3333 | 292 | 1.1694 | -0.0618 | 1.1694 | 1.0814 |
No log | 98.0 | 294 | 1.1647 | -0.0618 | 1.1647 | 1.0792 |
No log | 98.6667 | 296 | 1.1606 | -0.0618 | 1.1606 | 1.0773 |
No log | 99.3333 | 298 | 1.1585 | -0.0455 | 1.1585 | 1.0763 |
No log | 100.0 | 300 | 1.1578 | -0.0455 | 1.1578 | 1.0760 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task4_organization
Base model
aubmindlab/bert-base-arabertv02