ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k4_task1_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7274
- Qwk: 0.6401
- Mse: 0.7274
- Rmse: 0.8529
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0952 | 2 | 5.3664 | -0.0268 | 5.3664 | 2.3165 |
No log | 0.1905 | 4 | 3.2166 | 0.0746 | 3.2166 | 1.7935 |
No log | 0.2857 | 6 | 1.8572 | 0.0892 | 1.8572 | 1.3628 |
No log | 0.3810 | 8 | 1.4020 | 0.0877 | 1.4020 | 1.1841 |
No log | 0.4762 | 10 | 1.2676 | 0.1791 | 1.2676 | 1.1259 |
No log | 0.5714 | 12 | 1.2103 | 0.2452 | 1.2103 | 1.1001 |
No log | 0.6667 | 14 | 1.2437 | 0.2329 | 1.2437 | 1.1152 |
No log | 0.7619 | 16 | 1.2167 | 0.1893 | 1.2167 | 1.1030 |
No log | 0.8571 | 18 | 1.2136 | 0.1372 | 1.2136 | 1.1016 |
No log | 0.9524 | 20 | 1.2383 | 0.1372 | 1.2383 | 1.1128 |
No log | 1.0476 | 22 | 1.2150 | 0.1447 | 1.2150 | 1.1023 |
No log | 1.1429 | 24 | 1.1714 | 0.1547 | 1.1714 | 1.0823 |
No log | 1.2381 | 26 | 1.1724 | 0.0647 | 1.1724 | 1.0828 |
No log | 1.3333 | 28 | 1.1389 | 0.0877 | 1.1389 | 1.0672 |
No log | 1.4286 | 30 | 1.1544 | 0.2714 | 1.1544 | 1.0744 |
No log | 1.5238 | 32 | 1.1408 | 0.2987 | 1.1408 | 1.0681 |
No log | 1.6190 | 34 | 1.0413 | 0.3382 | 1.0413 | 1.0205 |
No log | 1.7143 | 36 | 0.9938 | 0.2606 | 0.9938 | 0.9969 |
No log | 1.8095 | 38 | 0.9735 | 0.3132 | 0.9735 | 0.9867 |
No log | 1.9048 | 40 | 1.0759 | 0.3249 | 1.0759 | 1.0373 |
No log | 2.0 | 42 | 1.1134 | 0.3745 | 1.1134 | 1.0552 |
No log | 2.0952 | 44 | 1.0911 | 0.3995 | 1.0911 | 1.0445 |
No log | 2.1905 | 46 | 1.1226 | 0.3480 | 1.1226 | 1.0595 |
No log | 2.2857 | 48 | 1.0529 | 0.3674 | 1.0529 | 1.0261 |
No log | 2.3810 | 50 | 0.9237 | 0.3955 | 0.9237 | 0.9611 |
No log | 2.4762 | 52 | 0.8887 | 0.3939 | 0.8887 | 0.9427 |
No log | 2.5714 | 54 | 0.8418 | 0.4856 | 0.8418 | 0.9175 |
No log | 2.6667 | 56 | 0.8296 | 0.4936 | 0.8296 | 0.9108 |
No log | 2.7619 | 58 | 0.8320 | 0.4901 | 0.8320 | 0.9121 |
No log | 2.8571 | 60 | 0.9304 | 0.4577 | 0.9304 | 0.9646 |
No log | 2.9524 | 62 | 0.9055 | 0.5152 | 0.9055 | 0.9516 |
No log | 3.0476 | 64 | 0.8571 | 0.5660 | 0.8571 | 0.9258 |
No log | 3.1429 | 66 | 1.0657 | 0.3972 | 1.0657 | 1.0323 |
No log | 3.2381 | 68 | 1.0152 | 0.4016 | 1.0152 | 1.0076 |
No log | 3.3333 | 70 | 0.8598 | 0.5519 | 0.8598 | 0.9273 |
No log | 3.4286 | 72 | 0.9296 | 0.5242 | 0.9296 | 0.9642 |
No log | 3.5238 | 74 | 0.9391 | 0.54 | 0.9391 | 0.9691 |
No log | 3.6190 | 76 | 0.9227 | 0.5766 | 0.9227 | 0.9606 |
No log | 3.7143 | 78 | 0.9553 | 0.5186 | 0.9553 | 0.9774 |
No log | 3.8095 | 80 | 0.9174 | 0.5823 | 0.9174 | 0.9578 |
No log | 3.9048 | 82 | 0.8569 | 0.6157 | 0.8569 | 0.9257 |
No log | 4.0 | 84 | 0.8583 | 0.6415 | 0.8583 | 0.9265 |
No log | 4.0952 | 86 | 0.7932 | 0.6749 | 0.7932 | 0.8906 |
No log | 4.1905 | 88 | 0.7412 | 0.6591 | 0.7412 | 0.8609 |
No log | 4.2857 | 90 | 0.7448 | 0.6253 | 0.7448 | 0.8630 |
No log | 4.3810 | 92 | 0.7633 | 0.7002 | 0.7633 | 0.8737 |
No log | 4.4762 | 94 | 0.9883 | 0.5634 | 0.9883 | 0.9941 |
No log | 4.5714 | 96 | 1.0211 | 0.5536 | 1.0211 | 1.0105 |
No log | 4.6667 | 98 | 0.8211 | 0.6084 | 0.8211 | 0.9062 |
No log | 4.7619 | 100 | 0.7067 | 0.6278 | 0.7067 | 0.8407 |
No log | 4.8571 | 102 | 0.7206 | 0.6437 | 0.7206 | 0.8489 |
No log | 4.9524 | 104 | 0.8047 | 0.5949 | 0.8047 | 0.8970 |
No log | 5.0476 | 106 | 0.9299 | 0.5816 | 0.9299 | 0.9643 |
No log | 5.1429 | 108 | 0.8436 | 0.6151 | 0.8436 | 0.9185 |
No log | 5.2381 | 110 | 0.8037 | 0.5823 | 0.8037 | 0.8965 |
No log | 5.3333 | 112 | 0.7687 | 0.5821 | 0.7687 | 0.8768 |
No log | 5.4286 | 114 | 0.7517 | 0.5805 | 0.7517 | 0.8670 |
No log | 5.5238 | 116 | 0.7474 | 0.5893 | 0.7474 | 0.8645 |
No log | 5.6190 | 118 | 0.8520 | 0.5900 | 0.8520 | 0.9231 |
No log | 5.7143 | 120 | 0.8440 | 0.5937 | 0.8439 | 0.9187 |
No log | 5.8095 | 122 | 0.7938 | 0.6329 | 0.7938 | 0.8910 |
No log | 5.9048 | 124 | 0.7643 | 0.6644 | 0.7643 | 0.8743 |
No log | 6.0 | 126 | 0.7959 | 0.6810 | 0.7959 | 0.8922 |
No log | 6.0952 | 128 | 0.8026 | 0.6810 | 0.8026 | 0.8959 |
No log | 6.1905 | 130 | 0.8198 | 0.6606 | 0.8198 | 0.9054 |
No log | 6.2857 | 132 | 0.7340 | 0.6259 | 0.7340 | 0.8567 |
No log | 6.3810 | 134 | 0.7062 | 0.6057 | 0.7062 | 0.8403 |
No log | 6.4762 | 136 | 0.6625 | 0.6333 | 0.6625 | 0.8139 |
No log | 6.5714 | 138 | 0.6531 | 0.6630 | 0.6531 | 0.8082 |
No log | 6.6667 | 140 | 0.6524 | 0.6738 | 0.6524 | 0.8077 |
No log | 6.7619 | 142 | 0.7012 | 0.6693 | 0.7012 | 0.8374 |
No log | 6.8571 | 144 | 0.9450 | 0.6258 | 0.9450 | 0.9721 |
No log | 6.9524 | 146 | 1.0562 | 0.5499 | 1.0562 | 1.0277 |
No log | 7.0476 | 148 | 0.8666 | 0.6425 | 0.8666 | 0.9309 |
No log | 7.1429 | 150 | 0.6695 | 0.6846 | 0.6695 | 0.8182 |
No log | 7.2381 | 152 | 0.6391 | 0.7017 | 0.6391 | 0.7994 |
No log | 7.3333 | 154 | 0.6906 | 0.6723 | 0.6906 | 0.8310 |
No log | 7.4286 | 156 | 0.7428 | 0.6666 | 0.7428 | 0.8619 |
No log | 7.5238 | 158 | 0.6373 | 0.6653 | 0.6373 | 0.7983 |
No log | 7.6190 | 160 | 0.6302 | 0.6800 | 0.6302 | 0.7939 |
No log | 7.7143 | 162 | 0.7094 | 0.6717 | 0.7094 | 0.8422 |
No log | 7.8095 | 164 | 0.7017 | 0.6350 | 0.7017 | 0.8377 |
No log | 7.9048 | 166 | 0.6210 | 0.6519 | 0.6210 | 0.7880 |
No log | 8.0 | 168 | 0.7171 | 0.6592 | 0.7171 | 0.8468 |
No log | 8.0952 | 170 | 0.9054 | 0.5981 | 0.9054 | 0.9516 |
No log | 8.1905 | 172 | 0.8857 | 0.6128 | 0.8857 | 0.9411 |
No log | 8.2857 | 174 | 0.7811 | 0.6519 | 0.7811 | 0.8838 |
No log | 8.3810 | 176 | 0.6782 | 0.6928 | 0.6782 | 0.8235 |
No log | 8.4762 | 178 | 0.6557 | 0.6922 | 0.6557 | 0.8098 |
No log | 8.5714 | 180 | 0.6501 | 0.6990 | 0.6501 | 0.8063 |
No log | 8.6667 | 182 | 0.6934 | 0.6748 | 0.6934 | 0.8327 |
No log | 8.7619 | 184 | 0.8191 | 0.6137 | 0.8191 | 0.9050 |
No log | 8.8571 | 186 | 0.9205 | 0.5626 | 0.9205 | 0.9594 |
No log | 8.9524 | 188 | 0.8630 | 0.5935 | 0.8630 | 0.9290 |
No log | 9.0476 | 190 | 0.7177 | 0.6463 | 0.7177 | 0.8471 |
No log | 9.1429 | 192 | 0.6613 | 0.6724 | 0.6613 | 0.8132 |
No log | 9.2381 | 194 | 0.6951 | 0.6903 | 0.6951 | 0.8337 |
No log | 9.3333 | 196 | 0.7599 | 0.6822 | 0.7599 | 0.8717 |
No log | 9.4286 | 198 | 0.7179 | 0.6971 | 0.7179 | 0.8473 |
No log | 9.5238 | 200 | 0.6326 | 0.6865 | 0.6326 | 0.7954 |
No log | 9.6190 | 202 | 0.6369 | 0.6678 | 0.6369 | 0.7981 |
No log | 9.7143 | 204 | 0.6420 | 0.6698 | 0.6420 | 0.8012 |
No log | 9.8095 | 206 | 0.6254 | 0.6700 | 0.6254 | 0.7909 |
No log | 9.9048 | 208 | 0.6507 | 0.6978 | 0.6507 | 0.8067 |
No log | 10.0 | 210 | 0.8094 | 0.6541 | 0.8094 | 0.8997 |
No log | 10.0952 | 212 | 0.9090 | 0.6251 | 0.9090 | 0.9534 |
No log | 10.1905 | 214 | 0.8172 | 0.6335 | 0.8172 | 0.9040 |
No log | 10.2857 | 216 | 0.7614 | 0.7103 | 0.7614 | 0.8726 |
No log | 10.3810 | 218 | 0.7649 | 0.7157 | 0.7649 | 0.8746 |
No log | 10.4762 | 220 | 0.7032 | 0.7028 | 0.7032 | 0.8386 |
No log | 10.5714 | 222 | 0.6484 | 0.6942 | 0.6484 | 0.8052 |
No log | 10.6667 | 224 | 0.6418 | 0.6893 | 0.6418 | 0.8011 |
No log | 10.7619 | 226 | 0.6569 | 0.6948 | 0.6569 | 0.8105 |
No log | 10.8571 | 228 | 0.6254 | 0.6752 | 0.6254 | 0.7908 |
No log | 10.9524 | 230 | 0.6240 | 0.6699 | 0.6240 | 0.7899 |
No log | 11.0476 | 232 | 0.6320 | 0.6822 | 0.6320 | 0.7950 |
No log | 11.1429 | 234 | 0.6323 | 0.7111 | 0.6323 | 0.7952 |
No log | 11.2381 | 236 | 0.6245 | 0.6939 | 0.6245 | 0.7902 |
No log | 11.3333 | 238 | 0.7112 | 0.7157 | 0.7112 | 0.8433 |
No log | 11.4286 | 240 | 0.6946 | 0.6937 | 0.6946 | 0.8334 |
No log | 11.5238 | 242 | 0.6539 | 0.6952 | 0.6539 | 0.8086 |
No log | 11.6190 | 244 | 0.6470 | 0.6948 | 0.6470 | 0.8044 |
No log | 11.7143 | 246 | 0.6428 | 0.6797 | 0.6428 | 0.8017 |
No log | 11.8095 | 248 | 0.7139 | 0.6852 | 0.7139 | 0.8449 |
No log | 11.9048 | 250 | 0.8550 | 0.6484 | 0.8550 | 0.9247 |
No log | 12.0 | 252 | 0.8664 | 0.6211 | 0.8664 | 0.9308 |
No log | 12.0952 | 254 | 0.7779 | 0.6244 | 0.7779 | 0.8820 |
No log | 12.1905 | 256 | 0.6994 | 0.6484 | 0.6994 | 0.8363 |
No log | 12.2857 | 258 | 0.6694 | 0.6650 | 0.6694 | 0.8182 |
No log | 12.3810 | 260 | 0.6761 | 0.6763 | 0.6761 | 0.8222 |
No log | 12.4762 | 262 | 0.7294 | 0.6784 | 0.7294 | 0.8540 |
No log | 12.5714 | 264 | 0.8756 | 0.6437 | 0.8756 | 0.9357 |
No log | 12.6667 | 266 | 1.0481 | 0.6152 | 1.0481 | 1.0238 |
No log | 12.7619 | 268 | 1.1053 | 0.5742 | 1.1053 | 1.0513 |
No log | 12.8571 | 270 | 0.9553 | 0.6248 | 0.9553 | 0.9774 |
No log | 12.9524 | 272 | 0.7535 | 0.6910 | 0.7535 | 0.8680 |
No log | 13.0476 | 274 | 0.6937 | 0.6704 | 0.6937 | 0.8329 |
No log | 13.1429 | 276 | 0.6852 | 0.6798 | 0.6852 | 0.8278 |
No log | 13.2381 | 278 | 0.6528 | 0.6852 | 0.6528 | 0.8080 |
No log | 13.3333 | 280 | 0.6728 | 0.6961 | 0.6728 | 0.8202 |
No log | 13.4286 | 282 | 0.6920 | 0.7111 | 0.6920 | 0.8319 |
No log | 13.5238 | 284 | 0.6700 | 0.7009 | 0.6700 | 0.8185 |
No log | 13.6190 | 286 | 0.6880 | 0.6979 | 0.6880 | 0.8295 |
No log | 13.7143 | 288 | 0.6337 | 0.6730 | 0.6337 | 0.7960 |
No log | 13.8095 | 290 | 0.6275 | 0.6857 | 0.6275 | 0.7921 |
No log | 13.9048 | 292 | 0.6475 | 0.6957 | 0.6475 | 0.8047 |
No log | 14.0 | 294 | 0.7273 | 0.6920 | 0.7273 | 0.8528 |
No log | 14.0952 | 296 | 0.7521 | 0.6857 | 0.7521 | 0.8672 |
No log | 14.1905 | 298 | 0.7693 | 0.6492 | 0.7693 | 0.8771 |
No log | 14.2857 | 300 | 0.6922 | 0.6473 | 0.6922 | 0.8320 |
No log | 14.3810 | 302 | 0.6570 | 0.6596 | 0.6570 | 0.8106 |
No log | 14.4762 | 304 | 0.6513 | 0.6833 | 0.6513 | 0.8070 |
No log | 14.5714 | 306 | 0.6700 | 0.6791 | 0.6700 | 0.8185 |
No log | 14.6667 | 308 | 0.7871 | 0.6656 | 0.7871 | 0.8872 |
No log | 14.7619 | 310 | 0.9075 | 0.6481 | 0.9075 | 0.9526 |
No log | 14.8571 | 312 | 0.8378 | 0.6879 | 0.8378 | 0.9153 |
No log | 14.9524 | 314 | 0.7835 | 0.7095 | 0.7835 | 0.8852 |
No log | 15.0476 | 316 | 0.7140 | 0.7091 | 0.7140 | 0.8450 |
No log | 15.1429 | 318 | 0.6608 | 0.6995 | 0.6608 | 0.8129 |
No log | 15.2381 | 320 | 0.6481 | 0.7162 | 0.6481 | 0.8050 |
No log | 15.3333 | 322 | 0.6718 | 0.6579 | 0.6718 | 0.8196 |
No log | 15.4286 | 324 | 0.7939 | 0.6551 | 0.7939 | 0.8910 |
No log | 15.5238 | 326 | 0.8735 | 0.6591 | 0.8735 | 0.9346 |
No log | 15.6190 | 328 | 0.8267 | 0.6686 | 0.8267 | 0.9092 |
No log | 15.7143 | 330 | 0.6916 | 0.7169 | 0.6916 | 0.8316 |
No log | 15.8095 | 332 | 0.6207 | 0.7008 | 0.6207 | 0.7878 |
No log | 15.9048 | 334 | 0.6094 | 0.6973 | 0.6094 | 0.7806 |
No log | 16.0 | 336 | 0.5950 | 0.7121 | 0.5950 | 0.7713 |
No log | 16.0952 | 338 | 0.6083 | 0.6991 | 0.6083 | 0.7799 |
No log | 16.1905 | 340 | 0.6152 | 0.6932 | 0.6152 | 0.7843 |
No log | 16.2857 | 342 | 0.6045 | 0.6902 | 0.6045 | 0.7775 |
No log | 16.3810 | 344 | 0.6004 | 0.7075 | 0.6004 | 0.7748 |
No log | 16.4762 | 346 | 0.6116 | 0.7017 | 0.6116 | 0.7820 |
No log | 16.5714 | 348 | 0.6332 | 0.7069 | 0.6332 | 0.7957 |
No log | 16.6667 | 350 | 0.6274 | 0.6941 | 0.6274 | 0.7921 |
No log | 16.7619 | 352 | 0.6511 | 0.6816 | 0.6511 | 0.8069 |
No log | 16.8571 | 354 | 0.6628 | 0.6771 | 0.6628 | 0.8141 |
No log | 16.9524 | 356 | 0.6424 | 0.6823 | 0.6424 | 0.8015 |
No log | 17.0476 | 358 | 0.6954 | 0.6734 | 0.6954 | 0.8339 |
No log | 17.1429 | 360 | 0.7633 | 0.6296 | 0.7633 | 0.8736 |
No log | 17.2381 | 362 | 0.7279 | 0.6475 | 0.7279 | 0.8532 |
No log | 17.3333 | 364 | 0.6920 | 0.6633 | 0.6920 | 0.8319 |
No log | 17.4286 | 366 | 0.6714 | 0.6633 | 0.6714 | 0.8194 |
No log | 17.5238 | 368 | 0.6476 | 0.6682 | 0.6476 | 0.8047 |
No log | 17.6190 | 370 | 0.6404 | 0.6947 | 0.6404 | 0.8002 |
No log | 17.7143 | 372 | 0.6696 | 0.6613 | 0.6696 | 0.8183 |
No log | 17.8095 | 374 | 0.8024 | 0.6545 | 0.8024 | 0.8958 |
No log | 17.9048 | 376 | 0.8541 | 0.6517 | 0.8541 | 0.9242 |
No log | 18.0 | 378 | 0.7482 | 0.6809 | 0.7482 | 0.8650 |
No log | 18.0952 | 380 | 0.6392 | 0.6826 | 0.6392 | 0.7995 |
No log | 18.1905 | 382 | 0.6306 | 0.6912 | 0.6306 | 0.7941 |
No log | 18.2857 | 384 | 0.6308 | 0.6768 | 0.6308 | 0.7942 |
No log | 18.3810 | 386 | 0.6515 | 0.6652 | 0.6515 | 0.8071 |
No log | 18.4762 | 388 | 0.7590 | 0.6447 | 0.7590 | 0.8712 |
No log | 18.5714 | 390 | 0.8827 | 0.6500 | 0.8827 | 0.9395 |
No log | 18.6667 | 392 | 0.8564 | 0.6613 | 0.8564 | 0.9254 |
No log | 18.7619 | 394 | 0.7159 | 0.6664 | 0.7159 | 0.8461 |
No log | 18.8571 | 396 | 0.6489 | 0.6877 | 0.6489 | 0.8055 |
No log | 18.9524 | 398 | 0.6494 | 0.6897 | 0.6494 | 0.8058 |
No log | 19.0476 | 400 | 0.6925 | 0.6818 | 0.6925 | 0.8321 |
No log | 19.1429 | 402 | 0.8349 | 0.6454 | 0.8349 | 0.9137 |
No log | 19.2381 | 404 | 1.0054 | 0.5555 | 1.0054 | 1.0027 |
No log | 19.3333 | 406 | 0.9931 | 0.5577 | 0.9931 | 0.9966 |
No log | 19.4286 | 408 | 0.8667 | 0.6089 | 0.8667 | 0.9310 |
No log | 19.5238 | 410 | 0.7524 | 0.6503 | 0.7524 | 0.8674 |
No log | 19.6190 | 412 | 0.6846 | 0.6567 | 0.6846 | 0.8274 |
No log | 19.7143 | 414 | 0.6681 | 0.6828 | 0.6681 | 0.8174 |
No log | 19.8095 | 416 | 0.7042 | 0.6898 | 0.7042 | 0.8392 |
No log | 19.9048 | 418 | 0.7661 | 0.6894 | 0.7661 | 0.8752 |
No log | 20.0 | 420 | 0.7924 | 0.7051 | 0.7924 | 0.8902 |
No log | 20.0952 | 422 | 0.8062 | 0.6975 | 0.8062 | 0.8979 |
No log | 20.1905 | 424 | 0.8820 | 0.6314 | 0.8820 | 0.9391 |
No log | 20.2857 | 426 | 0.8797 | 0.6050 | 0.8797 | 0.9379 |
No log | 20.3810 | 428 | 0.8015 | 0.6159 | 0.8015 | 0.8953 |
No log | 20.4762 | 430 | 0.7161 | 0.6044 | 0.7161 | 0.8462 |
No log | 20.5714 | 432 | 0.6809 | 0.6174 | 0.6809 | 0.8252 |
No log | 20.6667 | 434 | 0.6753 | 0.6361 | 0.6753 | 0.8218 |
No log | 20.7619 | 436 | 0.6519 | 0.6590 | 0.6519 | 0.8074 |
No log | 20.8571 | 438 | 0.6500 | 0.6892 | 0.6500 | 0.8062 |
No log | 20.9524 | 440 | 0.7249 | 0.6897 | 0.7249 | 0.8514 |
No log | 21.0476 | 442 | 0.7797 | 0.6769 | 0.7797 | 0.8830 |
No log | 21.1429 | 444 | 0.7580 | 0.7142 | 0.7580 | 0.8707 |
No log | 21.2381 | 446 | 0.6870 | 0.7021 | 0.6870 | 0.8289 |
No log | 21.3333 | 448 | 0.6561 | 0.7166 | 0.6561 | 0.8100 |
No log | 21.4286 | 450 | 0.6523 | 0.7004 | 0.6523 | 0.8076 |
No log | 21.5238 | 452 | 0.6680 | 0.6735 | 0.6680 | 0.8173 |
No log | 21.6190 | 454 | 0.6732 | 0.6853 | 0.6732 | 0.8205 |
No log | 21.7143 | 456 | 0.6803 | 0.6567 | 0.6803 | 0.8248 |
No log | 21.8095 | 458 | 0.6900 | 0.6488 | 0.6900 | 0.8306 |
No log | 21.9048 | 460 | 0.7027 | 0.6468 | 0.7027 | 0.8382 |
No log | 22.0 | 462 | 0.6960 | 0.6442 | 0.6960 | 0.8343 |
No log | 22.0952 | 464 | 0.6822 | 0.6558 | 0.6822 | 0.8260 |
No log | 22.1905 | 466 | 0.6762 | 0.6682 | 0.6762 | 0.8223 |
No log | 22.2857 | 468 | 0.6817 | 0.6870 | 0.6817 | 0.8257 |
No log | 22.3810 | 470 | 0.7144 | 0.6771 | 0.7144 | 0.8452 |
No log | 22.4762 | 472 | 0.7544 | 0.6722 | 0.7544 | 0.8686 |
No log | 22.5714 | 474 | 0.8005 | 0.6532 | 0.8005 | 0.8947 |
No log | 22.6667 | 476 | 0.7833 | 0.6725 | 0.7833 | 0.8850 |
No log | 22.7619 | 478 | 0.7221 | 0.6603 | 0.7221 | 0.8498 |
No log | 22.8571 | 480 | 0.7166 | 0.6571 | 0.7166 | 0.8465 |
No log | 22.9524 | 482 | 0.6940 | 0.6569 | 0.6940 | 0.8331 |
No log | 23.0476 | 484 | 0.6801 | 0.6880 | 0.6801 | 0.8247 |
No log | 23.1429 | 486 | 0.6902 | 0.6935 | 0.6902 | 0.8308 |
No log | 23.2381 | 488 | 0.7061 | 0.7009 | 0.7061 | 0.8403 |
No log | 23.3333 | 490 | 0.7693 | 0.7158 | 0.7693 | 0.8771 |
No log | 23.4286 | 492 | 0.7741 | 0.7158 | 0.7741 | 0.8798 |
No log | 23.5238 | 494 | 0.7211 | 0.7066 | 0.7211 | 0.8492 |
No log | 23.6190 | 496 | 0.6970 | 0.7096 | 0.6970 | 0.8349 |
No log | 23.7143 | 498 | 0.6875 | 0.6894 | 0.6875 | 0.8291 |
0.3756 | 23.8095 | 500 | 0.6949 | 0.6837 | 0.6949 | 0.8336 |
0.3756 | 23.9048 | 502 | 0.7563 | 0.6752 | 0.7563 | 0.8696 |
0.3756 | 24.0 | 504 | 0.8619 | 0.6196 | 0.8619 | 0.9284 |
0.3756 | 24.0952 | 506 | 0.8736 | 0.6246 | 0.8736 | 0.9347 |
0.3756 | 24.1905 | 508 | 0.7784 | 0.6489 | 0.7784 | 0.8823 |
0.3756 | 24.2857 | 510 | 0.7274 | 0.6401 | 0.7274 | 0.8529 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run1_AugV5_k4_task1_organization
Base model
aubmindlab/bert-base-arabertv02