shawgpt-ft / README.md
Mayilde's picture
Mayilde/shawgpt-ft
b9c303f verified
metadata
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
  - generated_from_trainer
model-index:
  - name: shawgpt-ft
    results: []

shawgpt-ft

This model is a fine-tuned version of TheBloke/Mistral-7B-Instruct-v0.2-GPTQ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4930

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.5948 0.9231 3 3.9703
4.0516 1.8462 6 3.4377
3.4456 2.7692 9 2.9505
2.2132 4.0 13 2.4876
2.5771 4.9231 16 2.2085
2.1985 5.8462 19 1.9655
1.9692 6.7692 22 1.8320
1.3913 8.0 26 1.7772
1.7898 8.9231 29 1.6993
1.7076 9.8462 32 1.6772
1.7068 10.7692 35 1.6532
1.2376 12.0 39 1.6191
1.64 12.9231 42 1.5902
1.5758 13.8462 45 1.5654
1.576 14.7692 48 1.5560
1.1826 16.0 52 1.5495
1.5448 16.9231 55 1.5249
1.499 17.8462 58 1.5051
1.0455 18.4615 60 1.4930

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.1.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1