Create README.md
#2
by
MaziyarPanahi
- opened
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
- es
|
7 |
+
- de
|
8 |
+
- it
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
Original README
|
14 |
+
---
|
15 |
+
|
16 |
+
# Model Card for Mixtral-8x22B-Instruct-v0.1
|
17 |
+
The Mixtral-8x22B-Instruct-v0.1 Large Language Model (LLM) is an instruct fine-tuned version of the [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1).
|
18 |
+
|
19 |
+
## Run the model
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForCausalLM
|
22 |
+
from mistral_common.protocol.instruct.messages import (
|
23 |
+
AssistantMessage,
|
24 |
+
UserMessage,
|
25 |
+
)
|
26 |
+
from mistral_common.protocol.instruct.tool_calls import (
|
27 |
+
Tool,
|
28 |
+
Function,
|
29 |
+
)
|
30 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
31 |
+
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
|
32 |
+
|
33 |
+
device = "cuda" # the device to load the model onto
|
34 |
+
|
35 |
+
tokenizer_v3 = MistralTokenizer.v3()
|
36 |
+
|
37 |
+
mistral_query = ChatCompletionRequest(
|
38 |
+
tools=[
|
39 |
+
Tool(
|
40 |
+
function=Function(
|
41 |
+
name="get_current_weather",
|
42 |
+
description="Get the current weather",
|
43 |
+
parameters={
|
44 |
+
"type": "object",
|
45 |
+
"properties": {
|
46 |
+
"location": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "The city and state, e.g. San Francisco, CA",
|
49 |
+
},
|
50 |
+
"format": {
|
51 |
+
"type": "string",
|
52 |
+
"enum": ["celsius", "fahrenheit"],
|
53 |
+
"description": "The temperature unit to use. Infer this from the users location.",
|
54 |
+
},
|
55 |
+
},
|
56 |
+
"required": ["location", "format"],
|
57 |
+
},
|
58 |
+
)
|
59 |
+
)
|
60 |
+
],
|
61 |
+
messages=[
|
62 |
+
UserMessage(content="What's the weather like today in Paris"),
|
63 |
+
],
|
64 |
+
model="test",
|
65 |
+
)
|
66 |
+
|
67 |
+
encodeds = tokenizer_v3.encode_chat_completion(mistral_query).tokens
|
68 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
|
69 |
+
model_inputs = encodeds.to(device)
|
70 |
+
model.to(device)
|
71 |
+
|
72 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
73 |
+
sp_tokenizer = tokenizer_v3.instruct_tokenizer.tokenizer
|
74 |
+
decoded = sp_tokenizer.decode(generated_ids[0])
|
75 |
+
print(decoded)
|
76 |
+
```
|
77 |
+
|
78 |
+
# Instruct tokenizer
|
79 |
+
The HuggingFace tokenizer included in this release should match our own. To compare:
|
80 |
+
`pip install mistral-common`
|
81 |
+
|
82 |
+
```py
|
83 |
+
from mistral_common.protocol.instruct.messages import (
|
84 |
+
AssistantMessage,
|
85 |
+
UserMessage,
|
86 |
+
)
|
87 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
88 |
+
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
|
89 |
+
|
90 |
+
from transformers import AutoTokenizer
|
91 |
+
|
92 |
+
tokenizer_v3 = MistralTokenizer.v3()
|
93 |
+
|
94 |
+
mistral_query = ChatCompletionRequest(
|
95 |
+
messages=[
|
96 |
+
UserMessage(content="How many experts ?"),
|
97 |
+
AssistantMessage(content="8"),
|
98 |
+
UserMessage(content="How big ?"),
|
99 |
+
AssistantMessage(content="22B"),
|
100 |
+
UserMessage(content="Noice 🎉 !"),
|
101 |
+
],
|
102 |
+
model="test",
|
103 |
+
)
|
104 |
+
hf_messages = mistral_query.model_dump()['messages']
|
105 |
+
|
106 |
+
tokenized_mistral = tokenizer_v3.encode_chat_completion(mistral_query).tokens
|
107 |
+
|
108 |
+
tokenizer_hf = AutoTokenizer.from_pretrained('mistralai/Mixtral-8x22B-Instruct-v0.1')
|
109 |
+
tokenized_hf = tokenizer_hf.apply_chat_template(hf_messages, tokenize=True)
|
110 |
+
|
111 |
+
assert tokenized_hf == tokenized_mistral
|
112 |
+
```
|
113 |
+
|
114 |
+
# Function calling and special tokens
|
115 |
+
This tokenizer includes more special tokens, related to function calling :
|
116 |
+
- [TOOL_CALLS]
|
117 |
+
- [AVAILABLE_TOOLS]
|
118 |
+
- [/AVAILABLE_TOOLS]
|
119 |
+
- [TOOL_RESULT]
|
120 |
+
- [/TOOL_RESULTS]
|
121 |
+
|
122 |
+
If you want to use this model with function calling, please be sure to apply it similarly to what is done in our [SentencePieceTokenizerV3](https://github.com/mistralai/mistral-common/blob/main/src/mistral_common/tokens/tokenizers/sentencepiece.py#L299).
|
123 |
+
|
124 |
+
# The Mistral AI Team
|
125 |
+
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux,
|
126 |
+
Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,
|
127 |
+
Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot,
|
128 |
+
Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger,
|
129 |
+
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona,
|
130 |
+
Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon,
|
131 |
+
Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat,
|
132 |
+
Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen,
|
133 |
+
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
|
134 |
+
Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang,
|
135 |
+
Valera Nemychnikova, William El Sayed, William Marshall
|
136 |
+
|
137 |
+
---
|