license: apache-2.0 | |
tags: | |
- finetuned | |
- quantized | |
- 4-bit | |
- gptq | |
- transformers | |
- safetensors | |
- mistral | |
- text-generation | |
- mlabonne/NeuralMarcoro14-7B | |
- dpo | |
- 7B | |
- winograd | |
- mmlu_abstract_algebra | |
- dataset:hromi/winograd_dpo_basic | |
- base_model:mlabonne/NeuralMarcoro14-7B | |
- doi:10.57967/hf/1611 | |
- license:apache-2.0 | |
- autotrain_compatible | |
- endpoints_compatible | |
- text-generation-inference | |
- region:us | |
- has_space | |
model_name: Turdus-GPTQ | |
base_model: udkai/Turdus | |
inference: false | |
model_creator: udkai | |
pipeline_tag: text-generation | |
quantized_by: MaziyarPanahi | |
# Description | |
[MaziyarPanahi/Turdus-GPTQ](https://huggingface.co/MaziyarPanahi/Turdus-GPTQ) is a quantized (GPTQ) version of [udkai/Turdus](https://huggingface.co/udkai/Turdus) | |
## How to use | |
### Install the necessary packages | |
``` | |
pip install --upgrade accelerate auto-gptq transformers | |
``` | |
### Example Python code | |
```python | |
from transformers import AutoTokenizer, pipeline | |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
import torch | |
model_id = "MaziyarPanahi/Turdus-GPTQ" | |
quantize_config = BaseQuantizeConfig( | |
bits=4, | |
group_size=128, | |
desc_act=False | |
) | |
model = AutoGPTQForCausalLM.from_quantized( | |
model_id, | |
use_safetensors=True, | |
device="cuda:0", | |
quantize_config=quantize_config) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.1 | |
) | |
outputs = pipe("What is a large language model?") | |
print(outputs[0]["generated_text"]) | |
``` |