language:
- en
license: other
library_name: transformers
tags:
- chat
- qwen
- qwen2.5
- finetune
- english
base_model: MaziyarPanahi/calme-3-selfmerge-qwen2-78b
model_name: calme-3.1-instruct-78b
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-3.1-instruct-78b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 81.36
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 62.41
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 38.75
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 19.46
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 36.5
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.72
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.1-instruct-78b
name: Open LLM Leaderboard
This is an experimental model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️
MaziyarPanahi/calme-3.1-instruct-78b
This model is an advanced iteration of the powerful Qwen/Qwen2.5-72B
, specifically fine-tuned to enhance its capabilities in generic domains. The Qwen2.5-72B
base model was merged with itself to create a larger model. After that, the model was fine-tuned on a custom datasets.
⚡ Quantized GGUF
Thanks to mradermacher
: calme-3.1-instruct-78b-GGUF
🏆 Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 51.20 |
IFEval (0-Shot) | 81.36 |
BBH (3-Shot) | 62.41 |
MATH Lvl 5 (4-Shot) | 38.75 |
GPQA (0-shot) | 19.46 |
MuSR (0-shot) | 36.50 |
MMLU-PRO (5-shot) | 68.72 |
Prompt Template
This model uses ChatML
prompt template:
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
How to use
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.1-instruct-78b")
pipe(messages)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.1-instruct-78b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.1-instruct-78b")
Ethical Considerations
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.